Let K be a field and let S = K[x_1, . . . , x_n] be a standard polynomial ring over a field K. We characterize the extremal Betti numbers, values as well as positions, of a t-spread strongly stable ideal of S. Our approach is constructive. Indeed, given some positive integers a_1, . . . , a_r and some pairs of positive integers (k_1, s_1), . . . , (k_r,  s_r ), we are able to determine under which conditions there exists a t-spread strongly stable ideal I of S with β_{k_i ,k_i+ s_i (I ) = a_i , i = 1, . . . , r , as extremal Betti numbers, and then to construct it.

A numerical characterization of the extremal Betti numbers of t-spread strongly stable ideals

Amata Luca
Primo
;
Crupi Marilena
Ultimo
2022-01-01

Abstract

Let K be a field and let S = K[x_1, . . . , x_n] be a standard polynomial ring over a field K. We characterize the extremal Betti numbers, values as well as positions, of a t-spread strongly stable ideal of S. Our approach is constructive. Indeed, given some positive integers a_1, . . . , a_r and some pairs of positive integers (k_1, s_1), . . . , (k_r,  s_r ), we are able to determine under which conditions there exists a t-spread strongly stable ideal I of S with β_{k_i ,k_i+ s_i (I ) = a_i , i = 1, . . . , r , as extremal Betti numbers, and then to construct it.
2022
File in questo prodotto:
File Dimensione Formato  
JAC.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 554.83 kB
Formato Adobe PDF
554.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3218638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact