Let K be a field and let S = K[x_1, . . . , x_n] be a standard polynomial ring over a field K. We characterize the extremal Betti numbers, values as well as positions, of a t-spread strongly stable ideal of S. Our approach is constructive. Indeed, given some positive integers a_1, . . . , a_r and some pairs of positive integers (k_1, s_1), . . . , (k_r, s_r ), we are able to determine under which conditions there exists a t-spread strongly stable ideal I of S with β_{k_i ,k_i+ s_i (I ) = a_i , i = 1, . . . , r , as extremal Betti numbers, and then to construct it.
A numerical characterization of the extremal Betti numbers of t-spread strongly stable ideals
Amata Luca
Primo
;Crupi MarilenaUltimo
2022-01-01
Abstract
Let K be a field and let S = K[x_1, . . . , x_n] be a standard polynomial ring over a field K. We characterize the extremal Betti numbers, values as well as positions, of a t-spread strongly stable ideal of S. Our approach is constructive. Indeed, given some positive integers a_1, . . . , a_r and some pairs of positive integers (k_1, s_1), . . . , (k_r, s_r ), we are able to determine under which conditions there exists a t-spread strongly stable ideal I of S with β_{k_i ,k_i+ s_i (I ) = a_i , i = 1, . . . , r , as extremal Betti numbers, and then to construct it.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JAC.pdf
solo gestori archivio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
554.83 kB
Formato
Adobe PDF
|
554.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.