Aging, a time-dependent multifaceted process, affects both cell structure and function and involves oxidative stress as well as glycation. The present investigation focuses on the role of the band 3 protein (B3p), an anion exchanger essential to red cells homeostasis, in a d-galactose (d-Gal)-induced aging model. Anion exchange capability, measured by the rate constant of SO₄²− uptake through B3p, levels of lipid peroxidation, oxidation of membrane sulfhydryl groups, B3p expression, methemoglobin, glycated hemoglobin (Hb), and the reduced glutathione/oxidized glutathione ratio were determined after exposure of human erythrocytes to 25, 35, 50, and 100 mmol/L d-Gal for 24 h. Our results show that: (i) in vitro application of d-Gal is useful to model early aging in human erythrocytes; (ii) assessment of B3p ion transport function is a sensitive tool to monitor aging development; (iii) d-Gal leads to Hb glycation and produces substantial changes on the endogenous antioxidant system; (iv) the impact of aging on B3p function proceeds through steps, first involving Hb glycation and then oxidative events at the membrane level. These findings offer a useful tool to understand the mechanisms of aging in human erythrocytes and propose B3p as a possible target for new therapeutic strategies to counteract age-related disturbances.

d-Galactose induced early aging in human erythrocytes: Role of band 3 protein

Remigante A.
Primo
Methodology
;
Spinelli S.
Secondo
Methodology
;
Trichilo V.
Methodology
;
Loddo S.
Methodology
;
Marino A.
Penultimo
Writing – Review & Editing
;
Morabito R.
Ultimo
Supervision
2022-01-01

Abstract

Aging, a time-dependent multifaceted process, affects both cell structure and function and involves oxidative stress as well as glycation. The present investigation focuses on the role of the band 3 protein (B3p), an anion exchanger essential to red cells homeostasis, in a d-galactose (d-Gal)-induced aging model. Anion exchange capability, measured by the rate constant of SO₄²− uptake through B3p, levels of lipid peroxidation, oxidation of membrane sulfhydryl groups, B3p expression, methemoglobin, glycated hemoglobin (Hb), and the reduced glutathione/oxidized glutathione ratio were determined after exposure of human erythrocytes to 25, 35, 50, and 100 mmol/L d-Gal for 24 h. Our results show that: (i) in vitro application of d-Gal is useful to model early aging in human erythrocytes; (ii) assessment of B3p ion transport function is a sensitive tool to monitor aging development; (iii) d-Gal leads to Hb glycation and produces substantial changes on the endogenous antioxidant system; (iv) the impact of aging on B3p function proceeds through steps, first involving Hb glycation and then oxidative events at the membrane level. These findings offer a useful tool to understand the mechanisms of aging in human erythrocytes and propose B3p as a possible target for new therapeutic strategies to counteract age-related disturbances.
2022
File in questo prodotto:
File Dimensione Formato  
Journal Cellular Physiology - 2021 - Remigante - d%u2010Galactose induced early aging in human erythrocytes Role of band 3.pdf

accesso aperto

Descrizione: J Cell Physiol 2021
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 894.57 kB
Formato Adobe PDF
894.57 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3219069
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact