Bus travel time analysis plays a key role in transit operation planning, and methods are needed for investigating its variability and for forecasting need. Nowadays, telematics is opening up new opportunities, given that large datasets can be gathered through automated monitoring, and this topic can be studied in more depth with new experimental evidence. The paper proposes a time-series-based approach for travel time forecasting, and data from automated vehicle monitoring (AVM) of bus lines sharing the road lanes with other traffic in Rome (Italy) and Lviv (Ukraine) are used. The results show the goodness of such an approach for the analysis and reliable forecasts of bus travel times. The similarities and dissimilarities in terms of travel time patterns and city structure were also pointed out, showing the need to take them into account when developing forecasting methods.
Bus Travel Time: Experimental Evidence and Forecasting
Antonio POLIMENI
2020-01-01
Abstract
Bus travel time analysis plays a key role in transit operation planning, and methods are needed for investigating its variability and for forecasting need. Nowadays, telematics is opening up new opportunities, given that large datasets can be gathered through automated monitoring, and this topic can be studied in more depth with new experimental evidence. The paper proposes a time-series-based approach for travel time forecasting, and data from automated vehicle monitoring (AVM) of bus lines sharing the road lanes with other traffic in Rome (Italy) and Lviv (Ukraine) are used. The results show the goodness of such an approach for the analysis and reliable forecasts of bus travel times. The similarities and dissimilarities in terms of travel time patterns and city structure were also pointed out, showing the need to take them into account when developing forecasting methods.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.