Accurate permittivity characterization has attracted a lot of attention in various areas. Resonant characterization methods are well-known for their accuracy, but they are restricted in very narrow frequency ranges, and thus, they are normally not recommended to be used for dispersive or high-loss materials. Transmission line characterization techniques are outstanding for being inexpensive, accurate, and broadband, but the algorithms are often complex to perform. This paper proposes a fast, simple, and accurate broadband permittivity characterization algorithm, which is mainly suitable for millimeter-wave applications. It combines a general line–line method and a closed-form algorithm, extracting the complex permittivity of the material under test (MUT) without the need for calculating any intermediate parameters. Validation measurements on de-ionized water in the frequency range from 140 to 220 GHz are in very good agreement with the literature data, which successfully indicates that the proposed algorithm is reliable and accurate for millimeter wave permittivity characterization.

Simple, Fast, and Accurate Broadband Complex Permittivity Characterization Algorithm: Methodology and Experimental Validation from 140 GHz up to 220 GHz

Crupi G.
Penultimo
;
2022-01-01

Abstract

Accurate permittivity characterization has attracted a lot of attention in various areas. Resonant characterization methods are well-known for their accuracy, but they are restricted in very narrow frequency ranges, and thus, they are normally not recommended to be used for dispersive or high-loss materials. Transmission line characterization techniques are outstanding for being inexpensive, accurate, and broadband, but the algorithms are often complex to perform. This paper proposes a fast, simple, and accurate broadband permittivity characterization algorithm, which is mainly suitable for millimeter-wave applications. It combines a general line–line method and a closed-form algorithm, extracting the complex permittivity of the material under test (MUT) without the need for calculating any intermediate parameters. Validation measurements on de-ionized water in the frequency range from 140 to 220 GHz are in very good agreement with the literature data, which successfully indicates that the proposed algorithm is reliable and accurate for millimeter wave permittivity characterization.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3221820
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact