Pendimethalin (PND) is a dinitroaniline preemergent herbicide widely used to control grasses and weeds. The present study aimed to evaluate the PND potential effects on the development of zebrafish early-life stages. The research focuses first on acute toxicity, followed by the integration of toxicity results through histopathology, oxidative status, and neurotoxicity evaluation of sublethal and environmentally relevant concentrations. Zebrafish larvae exposed to PND showed mortality and developed sublethal alterations including impaired fin development, lordosis, scoliosis, blood congestion, impaired blood flow, and reduced heartbeat. PND exposure (0.5 mg/L) affects musculoskeletal development leading to delayed and reduced ossification of the vertebral centra in the developing vertebral column and disruption of muscle morphology. Herbicide exposure (0.5 mg/L and 0.05 mg/L) led also to biochemical changes of antioxidant enzymes, increasing the activity of CAT, GR, and GPx, while no effects were observed on the activity of SOD and GST in zebrafish larvae. Lastly, AChE activity, a biochemical marker of neurotoxicity, was also increased in zebrafish larvae exposed to 0.5 mg/L of PND. These results confirm the developmental toxicity of PND in zebrafish early-life stages, pointing out the potential role of oxidative stress in the onset of sublethal alterations.
Dinitroaniline herbicide pendimethalin affects development and induces biochemical and histological alterations in zebrafish early-life stages
Caterina Faggio
Writing – Review & Editing
;
2022-01-01
Abstract
Pendimethalin (PND) is a dinitroaniline preemergent herbicide widely used to control grasses and weeds. The present study aimed to evaluate the PND potential effects on the development of zebrafish early-life stages. The research focuses first on acute toxicity, followed by the integration of toxicity results through histopathology, oxidative status, and neurotoxicity evaluation of sublethal and environmentally relevant concentrations. Zebrafish larvae exposed to PND showed mortality and developed sublethal alterations including impaired fin development, lordosis, scoliosis, blood congestion, impaired blood flow, and reduced heartbeat. PND exposure (0.5 mg/L) affects musculoskeletal development leading to delayed and reduced ossification of the vertebral centra in the developing vertebral column and disruption of muscle morphology. Herbicide exposure (0.5 mg/L and 0.05 mg/L) led also to biochemical changes of antioxidant enzymes, increasing the activity of CAT, GR, and GPx, while no effects were observed on the activity of SOD and GST in zebrafish larvae. Lastly, AChE activity, a biochemical marker of neurotoxicity, was also increased in zebrafish larvae exposed to 0.5 mg/L of PND. These results confirm the developmental toxicity of PND in zebrafish early-life stages, pointing out the potential role of oxidative stress in the onset of sublethal alterations.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.