Background: There is a growing realization that the gut-brain axis signaling is critical for maintaining the health and homeostasis of the Central Nervous System (CNS) and the intestinal environment. The role of Short-Chain Fatty Acids (SCFAs), such as Sodium Propionate (SP) and Sodium Butyrate (SB), has been reported to counteract inflammation activation in the central and Enteric Nervous System (ENS). Methods: In this study, we evaluated the role of the SCFAs in regulating the pathophysiology of migraine and correlated dysregulations in the gut environment in a mouse model of Nitroglycerine (NTG)-induced migraine. Results: We showed that, following behavioral tests evaluating pain and photophobia, the SP and SB treatments attenuated pain attacks provoked by NTG. Moreover, treatments with both SCFAs reduced histological damage in the trigeminal nerve nucleus and decreased the expression of proinflammatory mediators. Ileum evaluation following NTG injection reported that SCFA treatments importantly restored intestinal mucosa alterations, as well as the release of neurotransmitters in the ENS. Conclusions: Taken together, these results provide evidence that SCFAs exert powerful effects, preventing inflammation through the gut-brain axis, suggesting a new insight into the potential application of SCFAs as novel supportive therapies for migraine and correlated intestinal alterations.

SCFA Treatment Alleviates Pathological Signs of Migraine and Related Intestinal Alterations in a Mouse Model of NTG-Induced Migraine

Lanza, Marika;Filippone, Alessia;Ardizzone, Alessio;Casili, Giovanna;Paterniti, Irene;Esposito, Emanuela;Campolo, Michela
2021

Abstract

Background: There is a growing realization that the gut-brain axis signaling is critical for maintaining the health and homeostasis of the Central Nervous System (CNS) and the intestinal environment. The role of Short-Chain Fatty Acids (SCFAs), such as Sodium Propionate (SP) and Sodium Butyrate (SB), has been reported to counteract inflammation activation in the central and Enteric Nervous System (ENS). Methods: In this study, we evaluated the role of the SCFAs in regulating the pathophysiology of migraine and correlated dysregulations in the gut environment in a mouse model of Nitroglycerine (NTG)-induced migraine. Results: We showed that, following behavioral tests evaluating pain and photophobia, the SP and SB treatments attenuated pain attacks provoked by NTG. Moreover, treatments with both SCFAs reduced histological damage in the trigeminal nerve nucleus and decreased the expression of proinflammatory mediators. Ileum evaluation following NTG injection reported that SCFA treatments importantly restored intestinal mucosa alterations, as well as the release of neurotransmitters in the ENS. Conclusions: Taken together, these results provide evidence that SCFAs exert powerful effects, preventing inflammation through the gut-brain axis, suggesting a new insight into the potential application of SCFAs as novel supportive therapies for migraine and correlated intestinal alterations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3224464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact