We study renormalizable models with minimal field content that can provide a viable dark matter candidate through the standard freeze-out paradigm and, simultaneously, accommodate the observed anomalies in semileptonic B-meson decays at one loop. Following the hypothesis of minimality, this outcome can be achieved by extending the particle spectrum of the Standard Model either with one vectorlike fermion and two scalars or two vectorlike fermions and one scalar. The dark matter annihilations are mediated by t-channel exchange of other new particles contributing to the B anomalies, thus resulting in a correlation between flavor observables and dark matter abundance. Again based on minimality, we assume the new states to couple only with left-handed muons and second and third generation quarks. Besides an ad hoc symmetry needed to stabilize the dark matter, the interactions of the new states are dictated only by gauge invariance. We present here for the first time a systematic classification of the possible models of this kind, according to the quantum numbers of the new fields under the Standard Model gauge group. Within this general setup we identify a group of representative models that we systematically study, applying the most updated constraints from flavor observables, dedicated dark matter experiments, and LHC searches of leptons and/or jets and missing energy, and of disappearing charged tracks.

Systematic approach to B -physics anomalies and t -channel dark matter

Arcadi G.;
2021-01-01

Abstract

We study renormalizable models with minimal field content that can provide a viable dark matter candidate through the standard freeze-out paradigm and, simultaneously, accommodate the observed anomalies in semileptonic B-meson decays at one loop. Following the hypothesis of minimality, this outcome can be achieved by extending the particle spectrum of the Standard Model either with one vectorlike fermion and two scalars or two vectorlike fermions and one scalar. The dark matter annihilations are mediated by t-channel exchange of other new particles contributing to the B anomalies, thus resulting in a correlation between flavor observables and dark matter abundance. Again based on minimality, we assume the new states to couple only with left-handed muons and second and third generation quarks. Besides an ad hoc symmetry needed to stabilize the dark matter, the interactions of the new states are dictated only by gauge invariance. We present here for the first time a systematic classification of the possible models of this kind, according to the quantum numbers of the new fields under the Standard Model gauge group. Within this general setup we identify a group of representative models that we systematically study, applying the most updated constraints from flavor observables, dedicated dark matter experiments, and LHC searches of leptons and/or jets and missing energy, and of disappearing charged tracks.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3224638
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact