Right-handed neutrinos appear in several extensions beyond the Standard Model, especially in connection to neutrino masses. Motivated by this, we present a model of right-handed neutrino dark matter that interacts with Standard Model particles through a new gauge symmetry as well as via mass mixing between the new vector field and the Z boson, and investigate different production mechanisms. We derive the dark matter relic density when the Hubble rate is faster than usual, when dark matter decouples in a matter domination epoch, and when it decouples in a radiation domination regime, which is then followed by a matter domination era. The direct detection rate features a spin-independent but velocity suppressed operator, as well as a spin-dependent operator when the mass mixing is correctly accounted for. We put all these results into perspective with existing flavor physics, atomic parity violation, and collider bounds. Lastly, we outline the region of parameter space in which weak-scale right-handed neutrino dark matter stands as a viable dark matter candidate.
Roads for right-handed neutrino dark matter: Fast expansion, standard freeze-out, and early matter domination
Arcadi G.;
2022-01-01
Abstract
Right-handed neutrinos appear in several extensions beyond the Standard Model, especially in connection to neutrino masses. Motivated by this, we present a model of right-handed neutrino dark matter that interacts with Standard Model particles through a new gauge symmetry as well as via mass mixing between the new vector field and the Z boson, and investigate different production mechanisms. We derive the dark matter relic density when the Hubble rate is faster than usual, when dark matter decouples in a matter domination epoch, and when it decouples in a radiation domination regime, which is then followed by a matter domination era. The direct detection rate features a spin-independent but velocity suppressed operator, as well as a spin-dependent operator when the mass mixing is correctly accounted for. We put all these results into perspective with existing flavor physics, atomic parity violation, and collider bounds. Lastly, we outline the region of parameter space in which weak-scale right-handed neutrino dark matter stands as a viable dark matter candidate.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.105.035016.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.