Fibre hemp can be grown under a wide range of agro-ecological conditions, but it requires special attention for several physiological features and crop management. A management strategy in order to reduce inputs and thus achieve acceptable yield could be achieved optimizing sowing time. With this respect, the effects of sowing date on hemp biology and yield was studied, using two monoecious and two dioecious genotypes. Field experiments were carried out in two subsequent years (2003-2004) in South of Italy, using drip irrigation system. Sowing time, in the two year period, ranged between March 10th and July 22nd. Optimal sowing time was observed between the end of April and the first three weeks of May; in that range, the dioecious Fibranova yielded the most in terms of aboveground biomass and stem dry yield, followed by Tiborszallasi, while the two monoecious showed the lowest yield. On the contrary, before and after that period, the shorter day length caused an early floral induction that strongly reduced stem and fibre elongation, and thus aboveground dry biomass and consequently stem yields. Based on this study a simulation model focusing on flowering prediction in Mediterranean environment was developed. © 2011 Elsevier B.V.
Sowing time and prediction of flowering of different hemp (Cannabis sativa L.) genotypes in southern Europe
Scordia D.Penultimo
;
2012-01-01
Abstract
Fibre hemp can be grown under a wide range of agro-ecological conditions, but it requires special attention for several physiological features and crop management. A management strategy in order to reduce inputs and thus achieve acceptable yield could be achieved optimizing sowing time. With this respect, the effects of sowing date on hemp biology and yield was studied, using two monoecious and two dioecious genotypes. Field experiments were carried out in two subsequent years (2003-2004) in South of Italy, using drip irrigation system. Sowing time, in the two year period, ranged between March 10th and July 22nd. Optimal sowing time was observed between the end of April and the first three weeks of May; in that range, the dioecious Fibranova yielded the most in terms of aboveground biomass and stem dry yield, followed by Tiborszallasi, while the two monoecious showed the lowest yield. On the contrary, before and after that period, the shorter day length caused an early floral induction that strongly reduced stem and fibre elongation, and thus aboveground dry biomass and consequently stem yields. Based on this study a simulation model focusing on flowering prediction in Mediterranean environment was developed. © 2011 Elsevier B.V.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.