Superhydrophobic surfaces on 6082 aluminum alloy substrates are tailored by low-cost chemical surface treatments coupled to a fluorine-free alkyl-silane coating deposition. In particular, three different surface treatments are investigated: boiling water, HF/HCl, and HNO3/HCl etching. The results show that the micro-nano structure and the wetting behavior are greatly influenced by the applied surface texturing treatment. After silanization, all the textured surfaces exhibit a superhydrophobic behavior. The highest water contact angle (WCA, ≈180°) is obtained by HF/HCl etching. Interestingly, the water sliding angle (WSA) is affected by the anisotropic surface characteristics. Indeed, for the HF/HCl and the HNO3/HCl samples, the WSA in the longitudinal direction is lower than the transversal one, which slightly affects the self-cleaning capacity. The results point out that the superhydrophobic behavior of the aluminum alloys surface can be easily tailored by performing a two-step procedure: (i) roughening treatment and (ii) surface chemical silanization. Considering these promising results, the aim of further studies will be to improve the knowledge and optimize the process parameters in order to tailor a superhydrophobic surface with an effective performance in terms of stability and durability.

Effect of chemical surface texturing on the superhydrophobic behavior of micro–nano-roughened AA6082 surfaces

Khaskhoussi A.
Primo
;
Calabrese L.
Secondo
;
Patane S.
Penultimo
;
Proverbio E.
Ultimo
2021-01-01

Abstract

Superhydrophobic surfaces on 6082 aluminum alloy substrates are tailored by low-cost chemical surface treatments coupled to a fluorine-free alkyl-silane coating deposition. In particular, three different surface treatments are investigated: boiling water, HF/HCl, and HNO3/HCl etching. The results show that the micro-nano structure and the wetting behavior are greatly influenced by the applied surface texturing treatment. After silanization, all the textured surfaces exhibit a superhydrophobic behavior. The highest water contact angle (WCA, ≈180°) is obtained by HF/HCl etching. Interestingly, the water sliding angle (WSA) is affected by the anisotropic surface characteristics. Indeed, for the HF/HCl and the HNO3/HCl samples, the WSA in the longitudinal direction is lower than the transversal one, which slightly affects the self-cleaning capacity. The results point out that the superhydrophobic behavior of the aluminum alloys surface can be easily tailored by performing a two-step procedure: (i) roughening treatment and (ii) surface chemical silanization. Considering these promising results, the aim of further studies will be to improve the knowledge and optimize the process parameters in order to tailor a superhydrophobic surface with an effective performance in terms of stability and durability.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3228812
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact