Neisserial adhesin A (NadA) is a surface exposed trimeric protein present in most hypervirulent meningococcal strains and involved in epithelial cell adhesion and colonization. The expression of nadA is controlled by Neisserial adhesin regulator (NadR), a member of the MarR family, which binds to the nadA promoter and strongly represses the transcription of nadA. It was recently demonstrated that the DNAbinding activity of NadR was attenuated by 4-hydroxyphenylacetic acid (4-HPA), a natural molecule released in human saliva, thus leading to the de-repression of nadA in vivo. To elucidate the mechanism of regulation of NadR by 4-HPA, we used hydrogen-deuterium exchange mass spectrometry in association with in silico docking and sitedirected mutagenesis. We show here that 4-HPA binds at the interface between the dimerization and the DNA-binding domains and stabilizes the homodimeric state of NadR without inducing large conformational changes in the DNA-binding lobes. The residues predicted to be in contact with 4-HPA were further selected for mutagenesis to assess their in vitro and in vivo functions in 4-HPA binding. Our results indicate that Arg40 is critical for DNA-binding and reveal that Tyr 115 plays a key role in the mechanism of regulation of NadR by 4-HPA. Altogether our data suggest that the mechanism of regulation of NadR by 4-HPA mainly involves the stabilization of the dimer in a configuration incompatible with DNA binding. © 2012 American Chemical Society.

Structural insight into the mechanism of DNA-Binding Attenuation of the neisserial adhesin repressor nadr by the small natural Ligand 4-Hydroxyphenylacetic acid

Donnarumma D
Investigation
;
2012-01-01

Abstract

Neisserial adhesin A (NadA) is a surface exposed trimeric protein present in most hypervirulent meningococcal strains and involved in epithelial cell adhesion and colonization. The expression of nadA is controlled by Neisserial adhesin regulator (NadR), a member of the MarR family, which binds to the nadA promoter and strongly represses the transcription of nadA. It was recently demonstrated that the DNAbinding activity of NadR was attenuated by 4-hydroxyphenylacetic acid (4-HPA), a natural molecule released in human saliva, thus leading to the de-repression of nadA in vivo. To elucidate the mechanism of regulation of NadR by 4-HPA, we used hydrogen-deuterium exchange mass spectrometry in association with in silico docking and sitedirected mutagenesis. We show here that 4-HPA binds at the interface between the dimerization and the DNA-binding domains and stabilizes the homodimeric state of NadR without inducing large conformational changes in the DNA-binding lobes. The residues predicted to be in contact with 4-HPA were further selected for mutagenesis to assess their in vitro and in vivo functions in 4-HPA binding. Our results indicate that Arg40 is critical for DNA-binding and reveal that Tyr 115 plays a key role in the mechanism of regulation of NadR by 4-HPA. Altogether our data suggest that the mechanism of regulation of NadR by 4-HPA mainly involves the stabilization of the dimer in a configuration incompatible with DNA binding. © 2012 American Chemical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3229766
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact