Achieving homogenous dispersion of nanoparticles inside a polymeric matrix is a great challenge for numerous applications. In the present study, we aim at understanding the role of different factors on the dispersion properties of TiO2 in pluronic F-127 mixtures. The mixtures were prepared with different pH and guest/host ratios and investigated by UV-Vis spectroscopy, dynamic light scattering, infrared spectroscopy and electrical conductivity. Depending on the preparation conditions, different amounts of TiO2 were loaded within the copolymer as quantitatively determined by UV-Vis spectroscopy. The different content of nanoparticles has direct implications on the gelation and micellization of pluronic analyzed by dynamic light scattering. The information derived on the self-assembly behavior was interpreted in relation to the infrared and conductivity measurements results. Together, these results shed light on the most favorable conditions for improving the nanoparticle dispersion inside the copolymer matrix and suggest a possible strategy to design functional nanoparticle-polymer systems.

TiO2 Nanoparticles Dispersion in Block-Copolymer Aqueous Solutions: Nanoarchitectonics for Self-Assembly and Aggregation

Conti Nibali, Valeria
Primo
;
D'Angelo, Giovanna
Secondo
;
Arena, Antonella;Ciofi, Carmine;Scandurra, Graziella
Penultimo
;
Branca, Caterina
Ultimo
2022

Abstract

Achieving homogenous dispersion of nanoparticles inside a polymeric matrix is a great challenge for numerous applications. In the present study, we aim at understanding the role of different factors on the dispersion properties of TiO2 in pluronic F-127 mixtures. The mixtures were prepared with different pH and guest/host ratios and investigated by UV-Vis spectroscopy, dynamic light scattering, infrared spectroscopy and electrical conductivity. Depending on the preparation conditions, different amounts of TiO2 were loaded within the copolymer as quantitatively determined by UV-Vis spectroscopy. The different content of nanoparticles has direct implications on the gelation and micellization of pluronic analyzed by dynamic light scattering. The information derived on the self-assembly behavior was interpreted in relation to the infrared and conductivity measurements results. Together, these results shed light on the most favorable conditions for improving the nanoparticle dispersion inside the copolymer matrix and suggest a possible strategy to design functional nanoparticle-polymer systems.
File in questo prodotto:
File Dimensione Formato  
JFB.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/3230147
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact