Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
Motelow J. E.;Povysil G.;Dhindsa R. S.;Stanley K. E.;Allen A. S.;Feng Y. -C. A.;Howrigan D. P.;Abbott L. E.;Tashman K.;Cerrato F.;Cusick C.;Singh T.;Heyne H.;Byrnes A. E.;Churchhouse C.;Watts N.;Solomonson M.;Lal D.;Gupta N.;Neale B. M.;Cavalleri G. L.;Cossette P.;Cotsapas C.;De Jonghe P.;Dixon-Salazar T.;Guerrini R.;Hakonarson H.;Heinzen E. L.;Helbig I.;Kwan P.;Marson A. G.;Petrovski S.;Kamalakaran S.;Sisodiya S. M.;Stewart R.;Weckhuysen S.;Depondt C.;Dlugos D. J.;Scheffer I. E.;Striano P.;Freyer C.;Krause R.;May P.;McKenna K.;Regan B. M.;Bennett C. A.;Leu C.;Leech S. L.;O'Brien T. J.;Todaro M.;Stamberger H.;Andrade D. M.;Ali Q. Z.;Sadoway T. R.;Krestel H.;Schaller A.;Papacostas S. S.;Kousiappa I.;Tanteles G. A.;Christou Y.;Sterbova K.;Vlckova M.;Sedlackova L.;Lassuthova P.;Klein K. M.;Rosenow F.;Reif P. S.;Knake S.;Neubauer B. A.;Zimprich F.;Feucht M.;Reinthaler E. M.;Kunz W. S.;Zsurka G.;Surges R.;Baumgartner T.;von Wrede R.;Pendziwiat M.;Muhle H.;Rademacher A.;van Baalen A.;von Spiczak S.;Stephani U.;Afawi Z.;Korczyn A. D.;Kanaan M.;Canavati C.;Kurlemann G.;Muller-Schluter K.;Kluger G.;Hausler M.;Blatt I.;Lemke J. R.;Krey I.;Weber Y. G.;Wolking S.;Becker F.;Lauxmann S.;Bosselmann C.;Kegele J.;Hengsbach C.;Rau S.;Steinhoff B. J.;Schulze-Bonhage A.;Borggrafe I.;Schankin C. J.;Schubert-Bast S.;Schreiber H.;Mayer T.;Korinthenberg R.;Brockmann K.;Wolff M.;Dennig D.;Madeleyn R.;Kalviainen R.;Saarela A.;Timonen O.;Linnankivi T.;Lehesjoki A. -E.;Rheims S.;Lesca G.;Ryvlin P.;Maillard L.;Valton L.;Derambure P.;Bartolomei F.;Hirsch E.;Michel V.;Chassoux F.;Rees M. I.;Chung S. -K.;Pickrell W. O.;Powell R.;Baker M. D.;Fonferko-Shadrach B.;Lawthom C.;Anderson J.;Schneider N.;Balestrini S.;Zagaglia S.;Braatz V.;Johnson M. R.;Auce P.;Sills G. J.;Baum L. W.;Sham P. C.;Cherny S. S.;Lui C. H. T.;Delanty N.;Doherty C. P.;Shukralla A.;El-Naggar H.;Widdess-Walsh P.;Barisic N.;Canafoglia L.;Franceschetti S.;Castellotti B.;Granata T.;Ragona F.;Zara F.;Iacomino M.;Riva A.;Madia F.;Vari M. S.;Salpietro V.;Scala M.;Mancardi M. M.;Nobili L.;Amadori E.;Giacomini T.;Bisulli F.;Pippucci T.;Licchetta L.;Minardi R.;Tinuper P.;Muccioli L.;Mostacci B.;Gambardella A.;Labate A.;Annesi G.;Manna L.;Gagliardi M.;Parrini E.;Mei D.;Vetro A.;Bianchini C.;Montomoli M.;Doccini V.;Barba C.;Hirose S.;Ishii A.;Suzuki T.;Inoue Y.;Yamakawa K.;Beydoun A.;Nasreddine W.;Khoueiry Zgheib N.;Tumiene B.;Utkus A.;Sadleir L. G.;King C.;Caglayan S. H.;Arslan M.;Yapici Z.;Topaloglu P.;Kara B.;Yis U.;Turkdogan D.;Gundogdu-Eken A.;Bebek N.;Tsai M. -H.;Ho C. -J.;Lin C. -H.;Lin K. -L.;Chou I. -J.;Poduri A.;Shiedley B. R.;Shain C.;Noebels J. L.;Goldman A.;Busch R. M.;Jehi L.;Najm I. M.;Ferguson L.;Khoury J.;Glauser T. A.;Clark P. O.;Buono R. J.;Ferraro T. N.;Sperling M. R.;Lo W.;Privitera M.;French J. A.;Schachter S.;Kuzniecky R. I.;Devinsky O.;Hegde M.;Greenberg D. A.;Ellis C. A.;Goldberg E.;Helbig K. L.;Cosico M.;Vaidiswaran P.;Fitch E.;Berkovic S. F.;Lerche H.;Lowenstein D. H.;Goldstein D. B.
2021-01-01
Abstract
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3231604
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
28
31
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.