Despite impressive treatment advances, few options for refractory or relapsed Hodgkin Lymphoma (HL) are available and there is a need for new compounds development. A number of promising agents with multiple mechanisms of action are under investigation. Microenvironment and neoangiogenesis are acquiring a rising relevance in the pathophysiology and progression of HL. Everolimus (RAD001) is an oral antineoplastic agent derived from rapamycin, a macrocyclic lactone antibiotic, targeting the mammalian target of rapamycin (mTOR). Although the importance of mTOR signaling in the deregulated cell growth of human neoplastic cells has been recognized, this pathway is also emerging as a key regulator of the tumor response to hypoxia, as well as endothelial and stromal cells function, thereby regulating neoangiogenesis. Furthermore, mTOR plays an important role in anticancer drug resistance. The actions of everolimus within the mTOR pathway in HL result in decreased protein synthesis and cell cycle arrest, as well as in decreased angiogenesis. Everolimus has shown preliminary evidence of efficacy as a single-agent in heavily pretreated relapsed/refractory HL, with an overall fair safety profile. The purpose of this review is to discuss the employment of everolimus as an antiproliferative and antiangiogenic agent in HL and to report the critical role of the mTOR pathway and angiogenesis in this malignancy.

mTOR as a target of everolimus in refractory/relapsed Hodgkin Lymphoma

Silvestris N.;
2012-01-01

Abstract

Despite impressive treatment advances, few options for refractory or relapsed Hodgkin Lymphoma (HL) are available and there is a need for new compounds development. A number of promising agents with multiple mechanisms of action are under investigation. Microenvironment and neoangiogenesis are acquiring a rising relevance in the pathophysiology and progression of HL. Everolimus (RAD001) is an oral antineoplastic agent derived from rapamycin, a macrocyclic lactone antibiotic, targeting the mammalian target of rapamycin (mTOR). Although the importance of mTOR signaling in the deregulated cell growth of human neoplastic cells has been recognized, this pathway is also emerging as a key regulator of the tumor response to hypoxia, as well as endothelial and stromal cells function, thereby regulating neoangiogenesis. Furthermore, mTOR plays an important role in anticancer drug resistance. The actions of everolimus within the mTOR pathway in HL result in decreased protein synthesis and cell cycle arrest, as well as in decreased angiogenesis. Everolimus has shown preliminary evidence of efficacy as a single-agent in heavily pretreated relapsed/refractory HL, with an overall fair safety profile. The purpose of this review is to discuss the employment of everolimus as an antiproliferative and antiangiogenic agent in HL and to report the critical role of the mTOR pathway and angiogenesis in this malignancy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3234421
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact