By regulating several phases of gene expression, RNA editing modifications contribute to maintaining physiological RNA expression levels. RNA editing dysregulation can affect RNA molecule half-life, coding/noncoding RNA interaction, alternative splicing, and circular RNA biogenesis. Impaired RNA editing has been observed in several pathological conditions, including cancer and Alzheimer’s disease. No data has been published yet on the editome profile of endothelial cells (ECs) isolated from human cerebral cavernous malformation (CCM) lesions. Here, we describe a landscape of editome modifications in sporadic CCM-derived ECs (CCM-ECs) by comparing editing events with those observed in human brain microvascular endothelial cells (HBMECs). With a whole transcriptome-based variant calling pipeline, we identified differential edited genes in CCM-ECs that were enriched in pathways related to angiogenesis, apoptosis and cell survival, inflammation and, in particular, to thrombin signalling mediated by protease-activated receptors and non-canonical Wnt signalling. These pathways, not yet associated to CCM development, could be a novel field for further investigations on CCM molecular mechanisms. Moreover, enrichment analysis of differentially edited miRNAs suggested additional small noncoding transcripts to consider for development of targeted therapies.

Editome landscape of CCM-derived endothelial cells

Scimone Concetta
Conceptualization
;
Alibrandi Simona
Formal Analysis
;
Donato Luigi
Data Curation
;
Alafaci Concetta
Resources
;
Germanò Antonino
Resources
;
Vinci Sergio Lucio
Data Curation
;
D'Angelo Rosalia
Writing – Review & Editing
;
Sidoti Antonina.
Supervision
2022-01-01

Abstract

By regulating several phases of gene expression, RNA editing modifications contribute to maintaining physiological RNA expression levels. RNA editing dysregulation can affect RNA molecule half-life, coding/noncoding RNA interaction, alternative splicing, and circular RNA biogenesis. Impaired RNA editing has been observed in several pathological conditions, including cancer and Alzheimer’s disease. No data has been published yet on the editome profile of endothelial cells (ECs) isolated from human cerebral cavernous malformation (CCM) lesions. Here, we describe a landscape of editome modifications in sporadic CCM-derived ECs (CCM-ECs) by comparing editing events with those observed in human brain microvascular endothelial cells (HBMECs). With a whole transcriptome-based variant calling pipeline, we identified differential edited genes in CCM-ECs that were enriched in pathways related to angiogenesis, apoptosis and cell survival, inflammation and, in particular, to thrombin signalling mediated by protease-activated receptors and non-canonical Wnt signalling. These pathways, not yet associated to CCM development, could be a novel field for further investigations on CCM molecular mechanisms. Moreover, enrichment analysis of differentially edited miRNAs suggested additional small noncoding transcripts to consider for development of targeted therapies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3236128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact