When performing low-frequency noise measurements on low-impedance electron devices, transformer coupling can be quite effective in reducing the contribution of the equivalent input noise voltage of the preamplifier to the background noise of the system. However, noise measurements on electron devices are usually performed with a biased device under test. A bridge configuration must be used to null the DC component at the input of the transformer. Unfortunately, using a bridge results in a complication of the set-up and degradation of the system’s sensitivity because of the noise introduced by the nulling arm. We propose an alternative approach for blocking the DC component that exploits the fact that supercapacitors with capacitances in excess of a few Farads are nowadays easily available. Actual measurement results in conventional and advanced measurement configurations are discussed that demonstrate the advantages of the approach we propose.

On the Use of Supercapacitors for DC Blocking in Transformer-Coupled Voltage Amplifiers for Low-Frequency Noise Measurements

Scandurra G.
Primo
;
Ciofi C.
Ultimo
2022-01-01

Abstract

When performing low-frequency noise measurements on low-impedance electron devices, transformer coupling can be quite effective in reducing the contribution of the equivalent input noise voltage of the preamplifier to the background noise of the system. However, noise measurements on electron devices are usually performed with a biased device under test. A bridge configuration must be used to null the DC component at the input of the transformer. Unfortunately, using a bridge results in a complication of the set-up and degradation of the system’s sensitivity because of the noise introduced by the nulling arm. We propose an alternative approach for blocking the DC component that exploits the fact that supercapacitors with capacitances in excess of a few Farads are nowadays easily available. Actual measurement results in conventional and advanced measurement configurations are discussed that demonstrate the advantages of the approach we propose.
2022
Inglese
Si
No
No
0
MDPI
11
13
1
10
10
Internazionale
Esperti anonimi
1/f noise; cross-correlation; IR detectors; low-noise amplifiers; noise measurements; photoconductors; transformers
info:eu-repo/semantics/article
Scandurra, G.; Achtenberg, K.; Bielecki, Z.; Mikolajczyk, J.; Ciofi, C.
14.a Contributo in Rivista::14.a.1 Articolo su rivista
5
262
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3237048
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact