For a second-order semi-linear parabolic equation with the lowest term growing in an unknown function in a power-law manner, we prove that the sequence of solutions of a mixed problem in a perforated cylinder tends to the solution of the same problem in a non-perforated cylinder if the radii of the ejected balls, in the parabolic metric, tend to zero at a rate depending on the exponent in the lowest term.

Homogenization of the Semi-linear Parabolic Problem in a Perforated Cylinder

Giorgio Nordo
Ultimo
Investigation
2022-01-01

Abstract

For a second-order semi-linear parabolic equation with the lowest term growing in an unknown function in a power-law manner, we prove that the sequence of solutions of a mixed problem in a perforated cylinder tends to the solution of the same problem in a non-perforated cylinder if the radii of the ejected balls, in the parabolic metric, tend to zero at a rate depending on the exponent in the lowest term.
2022
File in questo prodotto:
File Dimensione Formato  
Homogenization of the Semi-linear Parabolic Problem in a Perforated Cylinder.pdf

solo utenti autorizzati

Descrizione: Homogenization of the Semi-linear Parabolic Problem in a Perforated Cylinder
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 485.46 kB
Formato Adobe PDF
485.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3237808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact