The static and dynamic properties of skyrmions have recently received increased attention due to the potential application of skyrmions as information carriers and for unconventional computing. While the current-driven dynamics has been explored deeply, both theoretically and experimentally, the theory of temperature gradient-induced dynamics—skyrmion caloritronics—is still at its early stages of develop- ment. Here, we move the topic forward by identifying the role of entropic torques due to the temperature dependence of magnetic parameters. Our results show that skyrmions move towards higher temperatures in single-layer ferromagnets with interfacial Dzyaloshinski-Moriya interactions, whereas, in multilayers, they move to lower temperatures. We analytically and numerically demonstrate that the opposite behaviors are due to different scaling relations of the material parameters as well as a non-negligible magnetostatic field gradient in multilayers. We also find a spatially dependent skyrmion Hall angle in multilayers hosting hybrid skyrmions due to variations of the thickness-dependent chirality as the skyrmion moves along the temperature gradient.

Temperature-Gradient-Driven Magnetic Skyrmion Motion

Raimondo, Eleonora
Primo
;
Giordano, Anna;Finocchio, Giovanni
Ultimo
2022-01-01

Abstract

The static and dynamic properties of skyrmions have recently received increased attention due to the potential application of skyrmions as information carriers and for unconventional computing. While the current-driven dynamics has been explored deeply, both theoretically and experimentally, the theory of temperature gradient-induced dynamics—skyrmion caloritronics—is still at its early stages of develop- ment. Here, we move the topic forward by identifying the role of entropic torques due to the temperature dependence of magnetic parameters. Our results show that skyrmions move towards higher temperatures in single-layer ferromagnets with interfacial Dzyaloshinski-Moriya interactions, whereas, in multilayers, they move to lower temperatures. We analytically and numerically demonstrate that the opposite behaviors are due to different scaling relations of the material parameters as well as a non-negligible magnetostatic field gradient in multilayers. We also find a spatially dependent skyrmion Hall angle in multilayers hosting hybrid skyrmions due to variations of the thickness-dependent chirality as the skyrmion moves along the temperature gradient.
2022
File in questo prodotto:
File Dimensione Formato  
33R.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3238890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 29
social impact