The aim of this article is the synthesis and characterization of bentonite-filled siloxane foams for oil spills recovery. Composite foams at varying filler content in the range 35–45 wt% were investigated. The sorption kinetics and capacity of composite foams in different oils (e.g., kerosene, virgin naphtha, pump oil) were assessed. As a reference, water absorption capacity was also evaluated. Among all, the composite foam filled with 40 wt% bentonite (B-40 batch) shows the lowest affinity with water and good absorption capacity with oils (mainly light oils) reaching an absorption capacity at saturation equal to 10.3 and 518.2 wt% in water and virgin naphtha, respectively. Furthermore, isothermal absorption curves were analyzed using three kinetic models: pseudo-first order, pseudo-second order, and Elovich models. The equilibrium isotherm fitting results were optimal using the pseudo-second order model, indicating that chemisorption phenomena play a key role in the speed of the absorption phase for these PDMS-based composite foams. Finally, a correlation was addressed between morphology, foam microstructure, absorption capacity, and kinetics.

Bentonite-PDMS composite foams for oil spill recovery: Sorption performance and kinetics

Piperopoulos E.
Primo
;
Calabrese L.
Secondo
;
Milone C.
Penultimo
;
Proverbio E.
Ultimo
2022-01-01

Abstract

The aim of this article is the synthesis and characterization of bentonite-filled siloxane foams for oil spills recovery. Composite foams at varying filler content in the range 35–45 wt% were investigated. The sorption kinetics and capacity of composite foams in different oils (e.g., kerosene, virgin naphtha, pump oil) were assessed. As a reference, water absorption capacity was also evaluated. Among all, the composite foam filled with 40 wt% bentonite (B-40 batch) shows the lowest affinity with water and good absorption capacity with oils (mainly light oils) reaching an absorption capacity at saturation equal to 10.3 and 518.2 wt% in water and virgin naphtha, respectively. Furthermore, isothermal absorption curves were analyzed using three kinetic models: pseudo-first order, pseudo-second order, and Elovich models. The equilibrium isotherm fitting results were optimal using the pseudo-second order model, indicating that chemisorption phenomena play a key role in the speed of the absorption phase for these PDMS-based composite foams. Finally, a correlation was addressed between morphology, foam microstructure, absorption capacity, and kinetics.
2022
File in questo prodotto:
File Dimensione Formato  
Copertina2.pdf

accesso aperto

Descrizione: Copertina
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 37.45 kB
Formato Adobe PDF
37.45 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3239758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact