To ensure the long-term success of a dental implant, it is imperative to understand how chewing loads are transferred through the implant prosthetic components to the surrounding bone tissue. The stress distribution depends on several factors, such as load type, bone-implant interface, shape and materials of the fixture and quality and quantity of the bone. These aspects are of fundamental importance to ensure implant stability and to evaluate the remodelling capacity of the bone tissue to adapt to its biomechanical environment. A bone remodelling algorithm was formulated by the authors and implemented by means of finite element simulations on four different implants with several design characteristics. Internal bone microstructure and density, apposition/resorption of tissue and implant stability were evaluated over a period of 12 months, showing the influence of the geometry on bone tissue evolution over time. Bone remodelling algorithms may be a useful aid for clinicians to prevent possible implant failures and define an adequate implant prosthetic rehabilitation for each patient. In this work, for the first time, external bone remodelling was numerically predicted over time.

A Parametric Study on a Dental Implant Geometry Influence on Bone Remodelling through a Numerical Algorithm

Santonocito, D
Primo
;
Nicita, F;Risitano, G
Ultimo
2021-01-01

Abstract

To ensure the long-term success of a dental implant, it is imperative to understand how chewing loads are transferred through the implant prosthetic components to the surrounding bone tissue. The stress distribution depends on several factors, such as load type, bone-implant interface, shape and materials of the fixture and quality and quantity of the bone. These aspects are of fundamental importance to ensure implant stability and to evaluate the remodelling capacity of the bone tissue to adapt to its biomechanical environment. A bone remodelling algorithm was formulated by the authors and implemented by means of finite element simulations on four different implants with several design characteristics. Internal bone microstructure and density, apposition/resorption of tissue and implant stability were evaluated over a period of 12 months, showing the influence of the geometry on bone tissue evolution over time. Bone remodelling algorithms may be a useful aid for clinicians to prevent possible implant failures and define an adequate implant prosthetic rehabilitation for each patient. In this work, for the first time, external bone remodelling was numerically predicted over time.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3239994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact