Background Parkinson's disease (PD) is the second most frequent neurodegenerative disease. PD etiopathogenesis is multifactorial and not yet fully known, however, the scientific world advised the establishment of neuroinflammation among the possible risk factors. In this field, basic fibroblast growth factor/fibroblast growth factor receptor-1 (bFGF/FGFR1) could be a promising way to treat CNS-mediated inflammation; unfortunately, the use of bFGF as therapeutic agent is limited by its side effects. The novel synthetic compound SUN11602 exhibited neuroprotective activities like bFGF. With this perspective, this study aimed to evaluate the effect of SUN11602 administration in a murine model of MPTP-induced dopaminergic degeneration. Methods Specifically, nigrostriatal degeneration was induced by intraperitoneal injection of MPTP (80 mg/kg). SUN11602 (1 mg/kg, 2.5 mg/kg, and 5 mg/kg) was administered daily by oral gavage starting from 24 h after the first administration of MPTP. Mice were killed 7 days after MPTP induction. Results The results obtained showed that SUN11602 administration significantly reduced the alteration of PD hallmarks, attenuating the neuroinflammatory state via modulation of glial activation, NF-kappa B pathway, and cytokine overexpression. Furthermore, we demonstrated that SUN11602 treatment rebalanced Ca2+ overload in neurons by regulating Ca2+-binding proteins while inhibiting the apoptotic cascade. Conclusion Therefore, in the light of these findings, SUN11602 could be considered a valuable pharmacological strategy for PD.

SUN11602, a bFGF mimetic, modulated neuroinflammation, apoptosis and calcium-binding proteins in an in vivo model of MPTP-induced nigrostriatal degeneration

Ardizzone, Alessio;Bova, Valentina;Casili, Giovanna;Filippone, Alessia
Data Curation
;
Campolo, Michela;Lanza, Marika;Esposito, Emanuela;Paterniti, Irene
2022-01-01

Abstract

Background Parkinson's disease (PD) is the second most frequent neurodegenerative disease. PD etiopathogenesis is multifactorial and not yet fully known, however, the scientific world advised the establishment of neuroinflammation among the possible risk factors. In this field, basic fibroblast growth factor/fibroblast growth factor receptor-1 (bFGF/FGFR1) could be a promising way to treat CNS-mediated inflammation; unfortunately, the use of bFGF as therapeutic agent is limited by its side effects. The novel synthetic compound SUN11602 exhibited neuroprotective activities like bFGF. With this perspective, this study aimed to evaluate the effect of SUN11602 administration in a murine model of MPTP-induced dopaminergic degeneration. Methods Specifically, nigrostriatal degeneration was induced by intraperitoneal injection of MPTP (80 mg/kg). SUN11602 (1 mg/kg, 2.5 mg/kg, and 5 mg/kg) was administered daily by oral gavage starting from 24 h after the first administration of MPTP. Mice were killed 7 days after MPTP induction. Results The results obtained showed that SUN11602 administration significantly reduced the alteration of PD hallmarks, attenuating the neuroinflammatory state via modulation of glial activation, NF-kappa B pathway, and cytokine overexpression. Furthermore, we demonstrated that SUN11602 treatment rebalanced Ca2+ overload in neurons by regulating Ca2+-binding proteins while inhibiting the apoptotic cascade. Conclusion Therefore, in the light of these findings, SUN11602 could be considered a valuable pharmacological strategy for PD.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3240143
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact