Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.

Wolfram Syndrome 1: From Genetics to Therapy

Rigoli, Luciana
Primo
Writing – Review & Editing
;
Salzano, Giuseppina
Writing – Original Draft Preparation
;
Lombardo, Fortunato
Ultimo
Writing – Original Draft Preparation
2022-01-01

Abstract

Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.
2022
File in questo prodotto:
File Dimensione Formato  
ijerph-19-03225.pdf

accesso aperto

Descrizione: Wolfram Syndrome 1: From Genetics to Therapy. Rigoli L, Caruso V, Salzano G, Lombardo F. Int J Environ Res Public Health. 2022 Mar 9;19(6):3225. doi: 10.3390/ijerph19063225. PMID: 35328914
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 779.79 kB
Formato Adobe PDF
779.79 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3240232
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact