Machine learning and signal processing on the edge are poised to influence our everyday lives with devices that will learn and infer from data generated by smart sensors and other devices for the Internet of Things. The next leap toward ubiquitous electronics requires increased energy efficiency of processors for specialized data-driven applications. Here, we show how an in-memory processor fabricated using a two-dimensional materials platform can potentially outperform its silicon counterparts in both standard and nontraditional Von Neumann architectures for artificial neural networks. We have fabricated a flash memory array with a two-dimensional channel using wafer-scale MoS2. Simulations and experiments show that the device can be scaled down to sub-micrometer channel length without any significant impact on its memory performance and that in simulation a reasonable memory window still exists at sub-50 nm channel lengths. Each device conductance in our circuit can be tuned with a 4-bit precision by closed-loop programming. Using our physical circuit, we demonstrate seven-segment digit display classification with a 91.5% accuracy with training performed ex situ and transferred from a host. Further simulations project that at a system level, the large memory arrays can perform AlexNet classification with an upper limit of 50 000 TOpS/W, potentially outperforming neural network integrated circuits based on double-poly CMOS technology.

Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS2

Giusi G.
Membro del Collaboration Group
;
2022-01-01

Abstract

Machine learning and signal processing on the edge are poised to influence our everyday lives with devices that will learn and infer from data generated by smart sensors and other devices for the Internet of Things. The next leap toward ubiquitous electronics requires increased energy efficiency of processors for specialized data-driven applications. Here, we show how an in-memory processor fabricated using a two-dimensional materials platform can potentially outperform its silicon counterparts in both standard and nontraditional Von Neumann architectures for artificial neural networks. We have fabricated a flash memory array with a two-dimensional channel using wafer-scale MoS2. Simulations and experiments show that the device can be scaled down to sub-micrometer channel length without any significant impact on its memory performance and that in simulation a reasonable memory window still exists at sub-50 nm channel lengths. Each device conductance in our circuit can be tuned with a 4-bit precision by closed-loop programming. Using our physical circuit, we demonstrate seven-segment digit display classification with a 91.5% accuracy with training performed ex situ and transferred from a host. Further simulations project that at a system level, the large memory arrays can perform AlexNet classification with an upper limit of 50 000 TOpS/W, potentially outperforming neural network integrated circuits based on double-poly CMOS technology.
2022
File in questo prodotto:
File Dimensione Formato  
acsnano.1c07065.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.98 MB
Formato Adobe PDF
3.98 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3240250
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact