We examine the semilinear resonant problem −∆u = λ1 u + λg(u) in Ω, u ≥ 0 in Ω, u|∂Ω = 0, where Ω ⊂ RN is a smooth, bounded domain, λ1 is the first eigenvalue of −∆ in Ω, λ > 0. Inspired by a previous result in literature involving power-type nonlinearities, we consider here a generic sublinear term g and single out conditions to ensure: the existence of solutions for all λ >0; the validity of the strong maximum principle for sufficiently small λ. The proof rests upon variational arguments.
Strong maximum principle for a sublinear elliptic problem at resonance
Anello G.Primo
;Cammaroto F.Secondo
;Vilasi L.
Ultimo
2022-01-01
Abstract
We examine the semilinear resonant problem −∆u = λ1 u + λg(u) in Ω, u ≥ 0 in Ω, u|∂Ω = 0, where Ω ⊂ RN is a smooth, bounded domain, λ1 is the first eigenvalue of −∆ in Ω, λ > 0. Inspired by a previous result in literature involving power-type nonlinearities, we consider here a generic sublinear term g and single out conditions to ensure: the existence of solutions for all λ >0; the validity of the strong maximum principle for sufficiently small λ. The proof rests upon variational arguments.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
acv 2022.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
392.66 kB
Formato
Adobe PDF
|
392.66 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.