We examine the semilinear resonant problem −∆u = λ1 u + λg(u) in Ω, u ≥ 0 in Ω, u|∂Ω = 0, where Ω ⊂ RN is a smooth, bounded domain, λ1 is the first eigenvalue of −∆ in Ω, λ > 0. Inspired by a previous result in literature involving power-type nonlinearities, we consider here a generic sublinear term g and single out conditions to ensure: the existence of solutions for all λ >0; the validity of the strong maximum principle for sufficiently small λ. The proof rests upon variational arguments.

Strong maximum principle for a sublinear elliptic problem at resonance

Anello G.
Primo
;
Cammaroto F.
Secondo
;
Vilasi L.
Ultimo
2022-01-01

Abstract

We examine the semilinear resonant problem −∆u = λ1 u + λg(u) in Ω, u ≥ 0 in Ω, u|∂Ω = 0, where Ω ⊂ RN is a smooth, bounded domain, λ1 is the first eigenvalue of −∆ in Ω, λ > 0. Inspired by a previous result in literature involving power-type nonlinearities, we consider here a generic sublinear term g and single out conditions to ensure: the existence of solutions for all λ >0; the validity of the strong maximum principle for sufficiently small λ. The proof rests upon variational arguments.
2022
File in questo prodotto:
File Dimensione Formato  
acv 2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 392.66 kB
Formato Adobe PDF
392.66 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3241871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact