Simple Summary Canine atopic dermatitis (cAD) is a clinical syndrome characterized by inflammatory and allergic manifestations. Recent studies have demonstrated that cAD has many common characteristics with human AD and this assertion is derived from the assumption that domestic dogs share the environment with their owners. Several therapeutic approaches can be used in the management of cAD; in our research, we used the mucus secreted by Helix aspersa Muller. To clarify the development of cAD, we employed cell lines of canine epidermal keratinocytes (CPEK). Our results highlight the anti-inflammatory capacity of mucus in reducing the inflammatory process produced during cAD. Atopic dermatitis (AD) is an inflammatory and allergic disease, whose multifactorial etiopathogenesis is the consequence of the link between the genetic, immunological and environmental components. The complexity and difficulty in understanding the causes that trigger or exacerbate this pathology makes it difficult, once diagnosed, to proceed with a targeted and effective therapeutic process. Today, the new frontiers of research look to natural and innovative treatments to counteract the different manifestations of dermatitis. From this point of view, the mucus secreted by Helix aspersa Muller has proven, since ancient times, to be able to neutralize skin diseases. To study canine atopic dermatitis (cAD), we used cell lines of canine epidermal keratinocytes (CPEK) that are optimal to understand the biological reactivity of keratinocytes in vitro. The data obtained from our study demonstrate the anti-inflammatory capacity of snail secretion filtrate (SSF) in counteracting the production of proinflammatory cytokines produced during cAD, highlighting the opportunities for further studies to be able to identify new, natural and safe treatments for cAD and to open new frontiers for veterinarians and owners.

Snail Mucus Filtrate Reduces Inflammation in Canine Progenitor Epidermal Keratinocytes (CPEK)

Messina, Laura;Bruno, Fabio;Licata, Patrizia;Paola, Davide Di;Franco, Gianluca;Marino, Ylenia;Peritore, Alessio Filippo;Cuzzocrea, Salvatore;Gugliandolo, Enrico;Crupi, Rosalia
2022-01-01

Abstract

Simple Summary Canine atopic dermatitis (cAD) is a clinical syndrome characterized by inflammatory and allergic manifestations. Recent studies have demonstrated that cAD has many common characteristics with human AD and this assertion is derived from the assumption that domestic dogs share the environment with their owners. Several therapeutic approaches can be used in the management of cAD; in our research, we used the mucus secreted by Helix aspersa Muller. To clarify the development of cAD, we employed cell lines of canine epidermal keratinocytes (CPEK). Our results highlight the anti-inflammatory capacity of mucus in reducing the inflammatory process produced during cAD. Atopic dermatitis (AD) is an inflammatory and allergic disease, whose multifactorial etiopathogenesis is the consequence of the link between the genetic, immunological and environmental components. The complexity and difficulty in understanding the causes that trigger or exacerbate this pathology makes it difficult, once diagnosed, to proceed with a targeted and effective therapeutic process. Today, the new frontiers of research look to natural and innovative treatments to counteract the different manifestations of dermatitis. From this point of view, the mucus secreted by Helix aspersa Muller has proven, since ancient times, to be able to neutralize skin diseases. To study canine atopic dermatitis (cAD), we used cell lines of canine epidermal keratinocytes (CPEK) that are optimal to understand the biological reactivity of keratinocytes in vitro. The data obtained from our study demonstrate the anti-inflammatory capacity of snail secretion filtrate (SSF) in counteracting the production of proinflammatory cytokines produced during cAD, highlighting the opportunities for further studies to be able to identify new, natural and safe treatments for cAD and to open new frontiers for veterinarians and owners.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3244815
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact