Joining is critical in shipbuilding impacting significantly on several aspects, i.e., properties, lightness, aesthetics, assembly/disassembly, maintenance employed workforce, emissions of fumes or gases. Consequently, it requires a significant study on impacts and risks. The aim of this work is to apply the Life Cycle Assessment to a friction stir welding process between aluminium and steel. The results confirmed that this welding is among the most sustainable (i.e., low energy, absence of filler, inert gases, and consumables). Moreover, was introduced a functional unit (i.e., length of weld divided by the thickness squared) that allows to compare different geometries and process parameters.
Integrating the sustainability aspects into the risk analysis for the manufacturing of dissimilar aluminium/steel friction stir welded single lap joints used in marine applications through a Life Cycle Assessment
Di Bella, Guido;Alderucci, Tiziana;Salmeri, Fabio;Cucinotta, Filippo
2022-01-01
Abstract
Joining is critical in shipbuilding impacting significantly on several aspects, i.e., properties, lightness, aesthetics, assembly/disassembly, maintenance employed workforce, emissions of fumes or gases. Consequently, it requires a significant study on impacts and risks. The aim of this work is to apply the Life Cycle Assessment to a friction stir welding process between aluminium and steel. The results confirmed that this welding is among the most sustainable (i.e., low energy, absence of filler, inert gases, and consumables). Moreover, was introduced a functional unit (i.e., length of weld divided by the thickness squared) that allows to compare different geometries and process parameters.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.