We consider the following singularly perturbed Schrodinger equation involving the N/s-fractional Laplacian operator, epsilon(N) (-Delta)(N/s)(s)u + V(x) vertical bar u vertical bar(N/s-2)u = f(u) in R-N, where epsilon is a positive parameter, s is an element of (0, 1), the potential V is positive and away from zero, and f is a Trudinger-Moser type nonlinearity. By using penalization methods and Lusternik-Schnirelmann's theory, we examine existence, multiplicity and concentration of non-trivial non-negative solutions for small values of epsilon.

ON A CLASS OF NONLOCAL SCHRODINGER EQUATIONS WITH EXPONENTIAL GROWTH

Vilasi L.
Ultimo
2022-01-01

Abstract

We consider the following singularly perturbed Schrodinger equation involving the N/s-fractional Laplacian operator, epsilon(N) (-Delta)(N/s)(s)u + V(x) vertical bar u vertical bar(N/s-2)u = f(u) in R-N, where epsilon is a positive parameter, s is an element of (0, 1), the potential V is positive and away from zero, and f is a Trudinger-Moser type nonlinearity. By using penalization methods and Lusternik-Schnirelmann's theory, we examine existence, multiplicity and concentration of non-trivial non-negative solutions for small values of epsilon.
2022
File in questo prodotto:
File Dimensione Formato  
Articolo ADE.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 429.38 kB
Formato Adobe PDF
429.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3245357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact