We consider the following singularly perturbed Schrodinger equation involving the N/s-fractional Laplacian operator, epsilon(N) (-Delta)(N/s)(s)u + V(x) vertical bar u vertical bar(N/s-2)u = f(u) in R-N, where epsilon is a positive parameter, s is an element of (0, 1), the potential V is positive and away from zero, and f is a Trudinger-Moser type nonlinearity. By using penalization methods and Lusternik-Schnirelmann's theory, we examine existence, multiplicity and concentration of non-trivial non-negative solutions for small values of epsilon.
ON A CLASS OF NONLOCAL SCHRODINGER EQUATIONS WITH EXPONENTIAL GROWTH
Vilasi L.Ultimo
2022-01-01
Abstract
We consider the following singularly perturbed Schrodinger equation involving the N/s-fractional Laplacian operator, epsilon(N) (-Delta)(N/s)(s)u + V(x) vertical bar u vertical bar(N/s-2)u = f(u) in R-N, where epsilon is a positive parameter, s is an element of (0, 1), the potential V is positive and away from zero, and f is a Trudinger-Moser type nonlinearity. By using penalization methods and Lusternik-Schnirelmann's theory, we examine existence, multiplicity and concentration of non-trivial non-negative solutions for small values of epsilon.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Articolo ADE.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
429.38 kB
Formato
Adobe PDF
|
429.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.