Operating only by means of the incidence matrix of a connected graph G, a new algebraic combinatorial method for determining the paths of length (q−1) of G together with the generators of the corresponding generalized graph ideal I_q (G) is discussed and developed. The stated formulae are obtained and shown even by changing techniques appropriately when the difficulties of calculation increased.

Counting paths of graphs via incidence matrices

M. Imbesi
Primo
;
M. La Barbiera
Ultimo
2024-01-01

Abstract

Operating only by means of the incidence matrix of a connected graph G, a new algebraic combinatorial method for determining the paths of length (q−1) of G together with the generators of the corresponding generalized graph ideal I_q (G) is discussed and developed. The stated formulae are obtained and shown even by changing techniques appropriately when the difficulties of calculation increased.
2024
File in questo prodotto:
File Dimensione Formato  
DoiVol16No1Art4.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 305.93 kB
Formato Adobe PDF
305.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3245633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact