The strategic relevance of extracting raw materials from waste from electrical and electronic equipment (WEEE) in the EU is increasing due to value chain risks caused by geopolitical instability, accessibility of specific minerals, and decreasing reserves due to growing extraction rates. This article examines the quantities of so-called critical raw materials (CRMs) originating within WEEE streams from a depletion perspective. Presently, current recycling targets are based solely on mass collection and recycling rates. We examine the potential limitations of this approach using an exergy-based indicator named thermodynamic rarity. This indicator represents the exergy costs needed for producing materials from the bare rock to market. The case of Italy is used to explore the application of the indicator at the macro (national) and micro (company) level for the product categories “small electronics” and “screens and monitors.” Our estimations show significant differences between the mass and rarity of materials within Italian WEEE streams. While iron accounts for more than 70% of the weight of the product categories analyzed, it accounts for less than 15% of the rarity. Similarly, several CRMs with a small mass have a higher rarity value, for example, tungsten with less than 0.1% of the mass and over 6% of the rarity. The policy context is reflected upon, where it is argued that thermodynamic rarity can provide novel insights to support end-of-life WEEE decision-making processes, for example, target development and recycling standards setting to help prioritize material monitoring and recovery options.

Thermodynamic rarity of electrical and electronic waste: Assessment and policy implications for critical materials

Roos Lindgreen, Erik;Mondello, Giovanni;Gulotta, Teresa Maria;Salomone, Roberta
2023-01-01

Abstract

The strategic relevance of extracting raw materials from waste from electrical and electronic equipment (WEEE) in the EU is increasing due to value chain risks caused by geopolitical instability, accessibility of specific minerals, and decreasing reserves due to growing extraction rates. This article examines the quantities of so-called critical raw materials (CRMs) originating within WEEE streams from a depletion perspective. Presently, current recycling targets are based solely on mass collection and recycling rates. We examine the potential limitations of this approach using an exergy-based indicator named thermodynamic rarity. This indicator represents the exergy costs needed for producing materials from the bare rock to market. The case of Italy is used to explore the application of the indicator at the macro (national) and micro (company) level for the product categories “small electronics” and “screens and monitors.” Our estimations show significant differences between the mass and rarity of materials within Italian WEEE streams. While iron accounts for more than 70% of the weight of the product categories analyzed, it accounts for less than 15% of the rarity. Similarly, several CRMs with a small mass have a higher rarity value, for example, tungsten with less than 0.1% of the mass and over 6% of the rarity. The policy context is reflected upon, where it is argued that thermodynamic rarity can provide novel insights to support end-of-life WEEE decision-making processes, for example, target development and recycling standards setting to help prioritize material monitoring and recovery options.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3248178
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact