Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (MIS-C) is characterized by persistent fever and evidence of single or multiorgan dysfunction, and laboratory evidence of inflammation, elevated neutrophils, reduced lymphocytes, and low albumin. The pathophysiological mechanisms of MIS-C are still unknown. Proinflammatory mediators, including reactive oxygen species and decreased antioxidant enzymes, seems to play a central role. Virus entry activates NOXs and inhibits Nrf-2 antioxidant response inducing free radicals. The biological functions of nonphagocytic NOXs are still under study and appear to include: defense of epithelia, intracellular signaling mechanisms for growth regulation and cell differentiation, and post-translational modifications of proteins. This educational review has the aim of analyzing the newest evidence on the role of oxidative stress (OS) in MIS-C. Only by relating inflammatory mediators to OS evaluation in children following SARS-CoV-2 infection will it be possible to achieve a better understanding of these mechanisms and to reduce long-term morbidity. The link between inflammation and OS is key to developing effective prevention strategies with antioxidants to protect children.
Pediatric Multisystem Syndrome Associated with SARS-CoV-2 (MIS-C): The Interplay of Oxidative Stress and Inflammation
Cannavò, LauraCo-primo
;Manti, Sara;Buonocore, Giuseppe;Gitto, EloisaUltimo
2022-01-01
Abstract
Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (MIS-C) is characterized by persistent fever and evidence of single or multiorgan dysfunction, and laboratory evidence of inflammation, elevated neutrophils, reduced lymphocytes, and low albumin. The pathophysiological mechanisms of MIS-C are still unknown. Proinflammatory mediators, including reactive oxygen species and decreased antioxidant enzymes, seems to play a central role. Virus entry activates NOXs and inhibits Nrf-2 antioxidant response inducing free radicals. The biological functions of nonphagocytic NOXs are still under study and appear to include: defense of epithelia, intracellular signaling mechanisms for growth regulation and cell differentiation, and post-translational modifications of proteins. This educational review has the aim of analyzing the newest evidence on the role of oxidative stress (OS) in MIS-C. Only by relating inflammatory mediators to OS evaluation in children following SARS-CoV-2 infection will it be possible to achieve a better understanding of these mechanisms and to reduce long-term morbidity. The link between inflammation and OS is key to developing effective prevention strategies with antioxidants to protect children.File | Dimensione | Formato | |
---|---|---|---|
ijms-23-12836.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
803.57 kB
Formato
Adobe PDF
|
803.57 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.