Bedding plants in the nursery phase are often subject to drought stress because of the small volume of the containers and the hydraulic conductivity of organic substrates used. To analyse the morphological, physiological, and enzymatic responses of zinnia (Zinnia elegans L.) plants at different irrigation levels, four treatments were performed: irrigated at 100% (100% field capacity, FC); light deficit irrigation (75% FC), medium deficit irrigation (50% FC), and severe deficit irrigation (25% FC). The growth of zinnia was significantly influenced by drought stress treatments. Different morphological parameters (dry biomass, leaf number, root to shoot ratio (R/S)) were modified only in the more severe drought stress treatment (25% FC). The stomata density increased in 50% FC and 25% FC, while the stomata size was reduced in 25% FC. The net photosynthesis, stomatal conductance, and transpiration were reduced in 50% FC and 25% FC. The relative water content (RWC) was reduced in 25% FC. Severe drought stress (25% FC) increased proline content up to seven-fold. Catalase (CAT), peroxidase (GPX), and superoxide dismutase (SOD) activity significantly increased in 50% FC and 25% FC. Principal component analysis (PCA) showed that the morphological and physiological parameters were mostly associated with the 100% FC and 75% FC treatments of the biplot, whereas the stomata density, R/S ratio, and antioxidant enzymes (GPX, CAT) were associated with 50% FC, and proline and DPPH were associated with 25% FC, respectively.

Morphological, Physiological, and Biochemical Responses of Zinnia to Drought Stress

Toscano, S
Primo
;
2021-01-01

Abstract

Bedding plants in the nursery phase are often subject to drought stress because of the small volume of the containers and the hydraulic conductivity of organic substrates used. To analyse the morphological, physiological, and enzymatic responses of zinnia (Zinnia elegans L.) plants at different irrigation levels, four treatments were performed: irrigated at 100% (100% field capacity, FC); light deficit irrigation (75% FC), medium deficit irrigation (50% FC), and severe deficit irrigation (25% FC). The growth of zinnia was significantly influenced by drought stress treatments. Different morphological parameters (dry biomass, leaf number, root to shoot ratio (R/S)) were modified only in the more severe drought stress treatment (25% FC). The stomata density increased in 50% FC and 25% FC, while the stomata size was reduced in 25% FC. The net photosynthesis, stomatal conductance, and transpiration were reduced in 50% FC and 25% FC. The relative water content (RWC) was reduced in 25% FC. Severe drought stress (25% FC) increased proline content up to seven-fold. Catalase (CAT), peroxidase (GPX), and superoxide dismutase (SOD) activity significantly increased in 50% FC and 25% FC. Principal component analysis (PCA) showed that the morphological and physiological parameters were mostly associated with the 100% FC and 75% FC treatments of the biplot, whereas the stomata density, R/S ratio, and antioxidant enzymes (GPX, CAT) were associated with 50% FC, and proline and DPPH were associated with 25% FC, respectively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3251723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact