A potentiometric study on the interactions of L-carnosine (CAR) (2-[(3-aminopropanoyl)amino]-3-(1H-imidazol-5-yl)propanoic acid) with two toxic metal cations, Hg2+ and Cd2+, is reported here. The elucidation of the metal (M2+)–CAR interactions in aqueous solution highlighted the speciation model for each system, the dependence of the formation constants of the complex species on ionic strength (0.15 ≤ I/ mol L−1 ≤ 1) and temperature (288.15 ≤ T/K ≤ 310.15) and changes in enthalpy and entropy. The sequestering ability of CAR towards the two metal ions was quantified and compared with that with Pb2+, previously determined. Considering the complexing ability of CAR and its unclear electrochemical properties, a more electroactive derivative, the ferrocenyl-carnosine (FcCAR), was synthesized and its complexing ability was evaluated by UV-vis spectroscopy. FcCAR electrochemical properties were investigated by Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) on Screen-Printed Electrodes (SPEs), to evaluate its sensing properties. Electrochemical responses in the presence of Hg2+ and Pb2+ have been shown to be promising for the electrochemical detection of these metal cations in aqueous environment.

Thermodynamic and voltammetric study on carnosine and ferrocenyl-carnosine

C. Abate;A. Piperno;O. Giuffre';A. Mazzaglia;A. Scala;C. Foti
2023-01-01

Abstract

A potentiometric study on the interactions of L-carnosine (CAR) (2-[(3-aminopropanoyl)amino]-3-(1H-imidazol-5-yl)propanoic acid) with two toxic metal cations, Hg2+ and Cd2+, is reported here. The elucidation of the metal (M2+)–CAR interactions in aqueous solution highlighted the speciation model for each system, the dependence of the formation constants of the complex species on ionic strength (0.15 ≤ I/ mol L−1 ≤ 1) and temperature (288.15 ≤ T/K ≤ 310.15) and changes in enthalpy and entropy. The sequestering ability of CAR towards the two metal ions was quantified and compared with that with Pb2+, previously determined. Considering the complexing ability of CAR and its unclear electrochemical properties, a more electroactive derivative, the ferrocenyl-carnosine (FcCAR), was synthesized and its complexing ability was evaluated by UV-vis spectroscopy. FcCAR electrochemical properties were investigated by Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) on Screen-Printed Electrodes (SPEs), to evaluate its sensing properties. Electrochemical responses in the presence of Hg2+ and Pb2+ have been shown to be promising for the electrochemical detection of these metal cations in aqueous environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3252445
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact