The aim Of this Study was to evaluate motor cortex excitability in spinocerebellar ataxia type 2 (SCA2). Cortical silent period (CSP), motor thresholds, and intracortical inhibition and facilitation by paired transcranial magnetic stimulation (TMS) were investigated in 18 SCA2 patients and in 20 controls. The mean CSP duration and motor threshold after TMS were significantly increased in the patient group. Intracortical inhibition by paired TMS at short interstimulus intervals (ISIs) showed no significant differences between patients and controls; at longer ISIs, the expected facilitation of test responses, observed in control subjects, resulted significantly less marked in SCA2 patients at all the tested intervals. Our Findings extend previous findings on cerebellar dysfunctions of varying aetiologies by investigating intracortical excitability in SCA2. In addition, this Study demonstrates that the cortical excitability involvement found in SCA2 is independent on the cytosine-adenine-guanine repeat expansion. The neurophysiological alterations seen in our patients relate to the worsening of general clinical condition. Thus, we might speculate that changes of motor cortex excitability in SCA2 represent a slow neurodegenerative process characterized by gradual loss of cerebellar neurons leading to an increasing disturbance of the balance between inhibitory and excitatory circuits in the motor system. (C) 2002 Elsevier Science B.V. All rights reserved.

Changes of cortical excitability of human motor cortex in spinocerebellar ataxia type 2. A study with paired transcranial magnetic stimulation

Restivo, Domenico A
;
2002-01-01

Abstract

The aim Of this Study was to evaluate motor cortex excitability in spinocerebellar ataxia type 2 (SCA2). Cortical silent period (CSP), motor thresholds, and intracortical inhibition and facilitation by paired transcranial magnetic stimulation (TMS) were investigated in 18 SCA2 patients and in 20 controls. The mean CSP duration and motor threshold after TMS were significantly increased in the patient group. Intracortical inhibition by paired TMS at short interstimulus intervals (ISIs) showed no significant differences between patients and controls; at longer ISIs, the expected facilitation of test responses, observed in control subjects, resulted significantly less marked in SCA2 patients at all the tested intervals. Our Findings extend previous findings on cerebellar dysfunctions of varying aetiologies by investigating intracortical excitability in SCA2. In addition, this Study demonstrates that the cortical excitability involvement found in SCA2 is independent on the cytosine-adenine-guanine repeat expansion. The neurophysiological alterations seen in our patients relate to the worsening of general clinical condition. Thus, we might speculate that changes of motor cortex excitability in SCA2 represent a slow neurodegenerative process characterized by gradual loss of cerebellar neurons leading to an increasing disturbance of the balance between inhibitory and excitatory circuits in the motor system. (C) 2002 Elsevier Science B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3255408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact