The goal of this manuscript is to investigate the optimal methods for extracting muscle synergies from a sit-to-stand test; in particular, the performance in identifying the modular structures from signals of different length is characterized. Methods: Surface electromyography signals have been recorded from instrumented sit-to-stand trials. Muscle synergies have then been extracted from signals of different duration (i.e. 5 times sit to stand and 30 seconds sit to stand) from different portions of a complete sit-to-stand-to-sit cycle. Performance have then been characterized using cross-validation procedures. Moreover, an optimal method based on a modified Akaike Information Criterion measure is applied on the signal for selecting the correct number of synergies from each trial. Results: Results show that it is possible to identify correctly muscle synergies from relatively short signals in a sit-to-stand experiment. Moreover, the information about motor control structures is identified with a higher consistency when only the sit-to-stand phase of the complete cycle is considered. Conclusions: Defining a set of optimal methods for the extraction of muscle synergies from a clnical test such as the sit-to-stand is of key relevance to ensure the applicability of any synergy-related analysis in the clinical practice, without requiring knowledge of the technical signal processing methods and the underlying features of the signal.
Optimal Identification of Muscle Synergies from Typical Sit-to-stand Clinical Tests
De Marchis C.Ultimo
2023-01-01
Abstract
The goal of this manuscript is to investigate the optimal methods for extracting muscle synergies from a sit-to-stand test; in particular, the performance in identifying the modular structures from signals of different length is characterized. Methods: Surface electromyography signals have been recorded from instrumented sit-to-stand trials. Muscle synergies have then been extracted from signals of different duration (i.e. 5 times sit to stand and 30 seconds sit to stand) from different portions of a complete sit-to-stand-to-sit cycle. Performance have then been characterized using cross-validation procedures. Moreover, an optimal method based on a modified Akaike Information Criterion measure is applied on the signal for selecting the correct number of synergies from each trial. Results: Results show that it is possible to identify correctly muscle synergies from relatively short signals in a sit-to-stand experiment. Moreover, the information about motor control structures is identified with a higher consistency when only the sit-to-stand phase of the complete cycle is considered. Conclusions: Defining a set of optimal methods for the extraction of muscle synergies from a clnical test such as the sit-to-stand is of key relevance to ensure the applicability of any synergy-related analysis in the clinical practice, without requiring knowledge of the technical signal processing methods and the underlying features of the signal.File | Dimensione | Formato | |
---|---|---|---|
Ranaldi2023_(OJEMB)_optimal identification of muscle synergies from typical sts clinical tests.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.