Caffeine (Caff) is one of the most widely used substances in the human diet and a well-recognized drug. Its input into surface waters is remarkable, but biological effects on aquatic organisms are unclear, particularly in combination with pollutants of suspected modulatory activity, like microplastics (MP). The aim of this study was to reveal the impact on the marine mussel Mytilus galloprovincialis (Lamark, 1819) of Caff (20.0 μg L-1) in the environmentally relevant combination (Mix) with MP 1 mg L-1 (size 35-50 μm) after the exposure for 14 days. Untreated and exposed to Caff and MP separately groups were also examined. Cell viability and cell volume regulation in hemocytes and digestive cells, as well as the indexes of oxidative stress, glutathione (GSH/GSSG) and metallothioneins levels, and caspase-3 activity in digestive gland were assessed. MP and Mix reduced Mn-superoxide dismutase, catalase, and glutathione S-transferase activities and level of lipid peroxidation, but increased the digestive gland cell viability, GSH/GSSG ratio (by 1.4-1.5-fold), metallothioneins level and their Zn content, while Caff did not affect oxidative stress indexes and metallothionein-related Zn chelation. Protein carbonyls were not targeted in all exposures. The distinguishing feature of the Caff group was the decline (2-fold) in caspase-3 activity and low cell viability. The multi-stress effect of Mix was shown by the worsening of the volume regulation of digestive cells and confirmed by discriminant analysis of biochemical indexes. The special capabilities of M. galloprovincialis as a sentinel organism make it an excellent bio-indicator reflecting the multi-stress effects in sub-chronic exposures to potentially harmful substances. The identification of the modulation of individual effects in combined exposure increases the need to base monitoring programs on studies of multi-stress effects in sub-chronic exposures.

Physiological and biochemical responses to caffeine and microplastics in Mytilus galloprovincialis

Impellitteri, F
Primo
;
Piccione, G;Stoliar, O;Faggio, C
Ultimo
2023-01-01

Abstract

Caffeine (Caff) is one of the most widely used substances in the human diet and a well-recognized drug. Its input into surface waters is remarkable, but biological effects on aquatic organisms are unclear, particularly in combination with pollutants of suspected modulatory activity, like microplastics (MP). The aim of this study was to reveal the impact on the marine mussel Mytilus galloprovincialis (Lamark, 1819) of Caff (20.0 μg L-1) in the environmentally relevant combination (Mix) with MP 1 mg L-1 (size 35-50 μm) after the exposure for 14 days. Untreated and exposed to Caff and MP separately groups were also examined. Cell viability and cell volume regulation in hemocytes and digestive cells, as well as the indexes of oxidative stress, glutathione (GSH/GSSG) and metallothioneins levels, and caspase-3 activity in digestive gland were assessed. MP and Mix reduced Mn-superoxide dismutase, catalase, and glutathione S-transferase activities and level of lipid peroxidation, but increased the digestive gland cell viability, GSH/GSSG ratio (by 1.4-1.5-fold), metallothioneins level and their Zn content, while Caff did not affect oxidative stress indexes and metallothionein-related Zn chelation. Protein carbonyls were not targeted in all exposures. The distinguishing feature of the Caff group was the decline (2-fold) in caspase-3 activity and low cell viability. The multi-stress effect of Mix was shown by the worsening of the volume regulation of digestive cells and confirmed by discriminant analysis of biochemical indexes. The special capabilities of M. galloprovincialis as a sentinel organism make it an excellent bio-indicator reflecting the multi-stress effects in sub-chronic exposures to potentially harmful substances. The identification of the modulation of individual effects in combined exposure increases the need to base monitoring programs on studies of multi-stress effects in sub-chronic exposures.
2023
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969723026967-main.pdf

accesso aperto

Descrizione: First online
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
3260429.pdf

accesso aperto

Descrizione: Articolo principale PDF editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3260429
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 41
social impact