Ionospheric error is one of the largest errors affecting global navigation satellite system (GNSS) users in open-sky conditions. This error can be mitigated using different approaches including dual-frequency measurements and corrections from augmentation systems. Although the adoption of multi-frequency devices has increased in recent years, most GNSS devices are still single-frequency standalone receivers. For these devices, the most used approach to correct ionospheric delays is to rely on a model. Recently, the empirical model Neustrelitz Total Electron Content Model for Galileo (NTCM-G) has been proposed as an alternative to Klobuchar and NeQuick-G (currently adopted by GPS and Galileo, respectively). While the latter outperforms the Klobuchar model, it requires a significantly higher computational load, which can limit its exploitation in some market segments. NTCM-G has a performance close to that of NeQuick-G and it shares with Klobuchar the limited computation load; the adoption of this model is emerging as a trade-off between performance and complexity. The performance of the three algorithms is assessed in the position domain using data for different geomagnetic locations and different solar activities and their execution time is also analysed. From the test results, it has emerged that in low- and medium-solar-activity conditions, NTCM-G provides slightly better performance, while NeQuick-G has better performance with intense solar activity. The NTCM-G computational load is significantly lower with respect to that of NeQuick-G and is comparable with that of Klobuchar.

Neustrelitz Total Electron Content Model for Galileo Performance: A Position Domain Analysis

Angrisano A.;
2023-01-01

Abstract

Ionospheric error is one of the largest errors affecting global navigation satellite system (GNSS) users in open-sky conditions. This error can be mitigated using different approaches including dual-frequency measurements and corrections from augmentation systems. Although the adoption of multi-frequency devices has increased in recent years, most GNSS devices are still single-frequency standalone receivers. For these devices, the most used approach to correct ionospheric delays is to rely on a model. Recently, the empirical model Neustrelitz Total Electron Content Model for Galileo (NTCM-G) has been proposed as an alternative to Klobuchar and NeQuick-G (currently adopted by GPS and Galileo, respectively). While the latter outperforms the Klobuchar model, it requires a significantly higher computational load, which can limit its exploitation in some market segments. NTCM-G has a performance close to that of NeQuick-G and it shares with Klobuchar the limited computation load; the adoption of this model is emerging as a trade-off between performance and complexity. The performance of the three algorithms is assessed in the position domain using data for different geomagnetic locations and different solar activities and their execution time is also analysed. From the test results, it has emerged that in low- and medium-solar-activity conditions, NTCM-G provides slightly better performance, while NeQuick-G has better performance with intense solar activity. The NTCM-G computational load is significantly lower with respect to that of NeQuick-G and is comparable with that of Klobuchar.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3267911
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact