Endometriosis is a chronic disease characterized by pelvic inflammation. This study aimed at investigating the molecular mechanisms underlying the pathology and how they can be modulated by the administration of a natural compound, Actaea racemosa (AR). We employed an in vivo model of endometriosis in which rats were intraperitoneally injected with uterine fragments from donor animals. During the experiment, rats were monitored by abdominal high-frequency ultrasound analysis. AR was able to reduce the lesion’s size and histological morphology. From a molecular point of view, AR reduced hyperproliferation, as shown by Ki-67 and PCNA expression and MAPK phosphorylation. The impaired apoptosis pathway was also restored, as shown by the TUNEL assay and RT-PCR for Bax, Bcl-2, and Caspase levels. AR also has important antioxidant (reduced Nox expression, restored SOD activity and GSH levels, and reduced MPO activity and MDA levels) and anti-inflammatory (reduced cytokine levels) properties. Moreover, AR demonstrated its ability to reduce the pain-like behaviors associated with the pathology, the neuro-sensitizing mediators (c-FOS and NGF) expression, and the related central astrogliosis (GFAP expression in the spinal cord, brain cortex, and hippocampus). Overall, our data showed that AR was able to manage several pathways involved in endometriosis suppression.

Modulation of the Proliferative Pathway, Neuroinflammation and Pain in Endometriosis

Interdonato L.;Marino Y.;D'Amico R.;Cordaro M.;Siracusa R.;Impellizzeri D.;Macri F.;Fusco R.;Cuzzocrea S.;Di Paola R.
2023-01-01

Abstract

Endometriosis is a chronic disease characterized by pelvic inflammation. This study aimed at investigating the molecular mechanisms underlying the pathology and how they can be modulated by the administration of a natural compound, Actaea racemosa (AR). We employed an in vivo model of endometriosis in which rats were intraperitoneally injected with uterine fragments from donor animals. During the experiment, rats were monitored by abdominal high-frequency ultrasound analysis. AR was able to reduce the lesion’s size and histological morphology. From a molecular point of view, AR reduced hyperproliferation, as shown by Ki-67 and PCNA expression and MAPK phosphorylation. The impaired apoptosis pathway was also restored, as shown by the TUNEL assay and RT-PCR for Bax, Bcl-2, and Caspase levels. AR also has important antioxidant (reduced Nox expression, restored SOD activity and GSH levels, and reduced MPO activity and MDA levels) and anti-inflammatory (reduced cytokine levels) properties. Moreover, AR demonstrated its ability to reduce the pain-like behaviors associated with the pathology, the neuro-sensitizing mediators (c-FOS and NGF) expression, and the related central astrogliosis (GFAP expression in the spinal cord, brain cortex, and hippocampus). Overall, our data showed that AR was able to manage several pathways involved in endometriosis suppression.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3273291
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact