We describe the simplicial complex Delta such that the initial ideal of the binomial edge ideal J(G) of G is the Stanley-Reisner ideal of Delta. By using Delta we show that if J(G) is (S-2), then G is accessible. We also characterize all accessible blocks with whiskers of cycle rank 3 and we define a new infinite class of accessible blocks with whiskers for any cycle rank. Finally, by using a computational approach, we show that the graphs with at most 12 vertices whose binomial edge ideal is Cohen-Macaulay are all and only the accessible ones.

(S-2)-condition and Cohen-Macaulay binomial edge ideals

Rinaldo, G
Penultimo
;
2023-01-01

Abstract

We describe the simplicial complex Delta such that the initial ideal of the binomial edge ideal J(G) of G is the Stanley-Reisner ideal of Delta. By using Delta we show that if J(G) is (S-2), then G is accessible. We also characterize all accessible blocks with whiskers of cycle rank 3 and we define a new infinite class of accessible blocks with whiskers for any cycle rank. Finally, by using a computational approach, we show that the graphs with at most 12 vertices whose binomial edge ideal is Cohen-Macaulay are all and only the accessible ones.
2023
File in questo prodotto:
File Dimensione Formato  
S2BeiJaco.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 559.55 kB
Formato Adobe PDF
559.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3273590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact