This paper sheds light on the shift that is taking place from the practice of ‘coding’, namely developing programs as conventional in the software community, to the practice of ‘curing’, an activity that has emerged in the last few years in Deep Learning (DL) and that amounts to curing the data regime to which a DL model is exposed during training. Initially, the curing paradigm is illustrated by means of a study-case on autonomous vehicles. Subsequently, the shift from coding to curing is analysed taking into consideration the epistemological notions, central in the philosophy of computer science, of function, implementation, and correctness. First, it is illustrated how, in the curing paradigm, the functions performed by the trained model depend much more on dataset curation rather than on the model algorithms which, in contrast with the coding paradigm, do not comply with requested specifications. Second, it is highlighted how DL models cannot be considered implementations according to any of the available definitions of implementation that follow an intentional theory of functions. Finally, it is argued that DL models cannot be evaluated in terms of their correctness but rather in their experimental computational validity.

From Coding To Curing. Functions, Implementations, and Correctness in Deep Learning.

Angius, Nicola
Primo
;
Plebe, Alessio
2023-01-01

Abstract

This paper sheds light on the shift that is taking place from the practice of ‘coding’, namely developing programs as conventional in the software community, to the practice of ‘curing’, an activity that has emerged in the last few years in Deep Learning (DL) and that amounts to curing the data regime to which a DL model is exposed during training. Initially, the curing paradigm is illustrated by means of a study-case on autonomous vehicles. Subsequently, the shift from coding to curing is analysed taking into consideration the epistemological notions, central in the philosophy of computer science, of function, implementation, and correctness. First, it is illustrated how, in the curing paradigm, the functions performed by the trained model depend much more on dataset curation rather than on the model algorithms which, in contrast with the coding paradigm, do not comply with requested specifications. Second, it is highlighted how DL models cannot be considered implementations according to any of the available definitions of implementation that follow an intentional theory of functions. Finally, it is argued that DL models cannot be evaluated in terms of their correctness but rather in their experimental computational validity.
2023
File in questo prodotto:
File Dimensione Formato  
From Coding to Curing.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 574.72 kB
Formato Adobe PDF
574.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3274633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact