Functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)(2)) exhibit relatively intense fluorescence from the relaxed excited state formed by excited-state intramolecular proton transfer (ESIPT). Bromo functionalization of (BP(OH)(2)) species followed by palladium (0)-catalyzed reactions allows the connection (via alkyne tethers) of functional groups, such as the singlet-emitter diazaboraindacene (bodipy) group or a chelating module (terpyridine; terpy). The X-ray structure of the terpy-based compound confirms the planarity of the 3,3'-dihydroxy-bipyridine unit. The new dyes exhibit relatively intense emission on the nanosecond timescale when in fluid solution, in the solid state at 298 K, and in rigid glasses at 77 K. In some cases, the excitation wavelength luminescence was observed and attributed to 1) inefficiency of the ESIPT process in particular compounds when not enough vibrational energy is introduced in the Franck-Condon state, which is populated by direct light excitation or 2) the presence of an additional excited state that deactivates to the ground state without undergoing the ESIPT process. For some selected species, the effect of the addition of zinc salts on the absorption and luminescence spectra was investigated. In particular, significant fluorescence changes were observed as a consequence of probable consecutive formation of a 1:1 and 1:2 molecular ratio of ligand/zinc adducts owing to coordination of Zn-II ions by the bipyridyldiol moieties, except when an additional terpyridine subunit is present. In fact, this latter species preferentially coordinates to the Zn-II ion in a 1:1 molecular ratio and further inhibits Zn-II interaction. In the hybrid Bodipy/BP(OH)(2) species, complete energy transfer from the BP(OH)(2) to the bodipy fluorophore occurs, leading to exclusive emission from the lowest-lying bodipy subunit.

Luminescent excited-state intramolecular proton-transfer (ESIPT) dyes based on 4-alkyne-functionalized [2,2'-bipyridine]-3,3'-diol dyes

Nastasi, Francesco;Puntoriero, Fausto;Campagna, Sebastiano
2008-01-01

Abstract

Functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)(2)) exhibit relatively intense fluorescence from the relaxed excited state formed by excited-state intramolecular proton transfer (ESIPT). Bromo functionalization of (BP(OH)(2)) species followed by palladium (0)-catalyzed reactions allows the connection (via alkyne tethers) of functional groups, such as the singlet-emitter diazaboraindacene (bodipy) group or a chelating module (terpyridine; terpy). The X-ray structure of the terpy-based compound confirms the planarity of the 3,3'-dihydroxy-bipyridine unit. The new dyes exhibit relatively intense emission on the nanosecond timescale when in fluid solution, in the solid state at 298 K, and in rigid glasses at 77 K. In some cases, the excitation wavelength luminescence was observed and attributed to 1) inefficiency of the ESIPT process in particular compounds when not enough vibrational energy is introduced in the Franck-Condon state, which is populated by direct light excitation or 2) the presence of an additional excited state that deactivates to the ground state without undergoing the ESIPT process. For some selected species, the effect of the addition of zinc salts on the absorption and luminescence spectra was investigated. In particular, significant fluorescence changes were observed as a consequence of probable consecutive formation of a 1:1 and 1:2 molecular ratio of ligand/zinc adducts owing to coordination of Zn-II ions by the bipyridyldiol moieties, except when an additional terpyridine subunit is present. In fact, this latter species preferentially coordinates to the Zn-II ion in a 1:1 molecular ratio and further inhibits Zn-II interaction. In the hybrid Bodipy/BP(OH)(2) species, complete energy transfer from the BP(OH)(2) to the bodipy fluorophore occurs, leading to exclusive emission from the lowest-lying bodipy subunit.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3274689
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact