We study the existence of common solutions of the Stampacchia and Minty variational inequalities associated to non-monotone operators in Banach spaces, as a consequence of a general saddle-point theorem. We prove, in particular, that if $(X,\|\cdot\|)$ is a Banach space, whose norm has suitable convexity and differentiability properties, $B_\rho:=\{x\in X: \|x\|\le\rho\}$, and $\Phi:B_\rho\to X^*$ is a $C^1$ function with Lipschitzian derivative, with $\Phi(0)\ne0$, then for each $r>0$ small enough, there exists a unique $x^*\in B_r$, with $\|x\|=r$, such that $\max\,\{\langle \Phi(x^*), x^*-x\rangle, \langle \Phi(x), x^*-x\rangle \}<0$ for all $x\in B_r\setminus\{x^*\}$. Our results extend to the setting of Banach spaces some results previously obtained by B. Ricceri in the setting of Hilbert spaces.

Existence and uniqueness of common solutions of strict Stampacchia and Minty variational inequalities with non-monotone operators in Banach spaces

FILIPPO CAMMAROTO
Primo
;
PAOLO CUBIOTTI
Ultimo
2023-01-01

Abstract

We study the existence of common solutions of the Stampacchia and Minty variational inequalities associated to non-monotone operators in Banach spaces, as a consequence of a general saddle-point theorem. We prove, in particular, that if $(X,\|\cdot\|)$ is a Banach space, whose norm has suitable convexity and differentiability properties, $B_\rho:=\{x\in X: \|x\|\le\rho\}$, and $\Phi:B_\rho\to X^*$ is a $C^1$ function with Lipschitzian derivative, with $\Phi(0)\ne0$, then for each $r>0$ small enough, there exists a unique $x^*\in B_r$, with $\|x\|=r$, such that $\max\,\{\langle \Phi(x^*), x^*-x\rangle, \langle \Phi(x), x^*-x\rangle \}<0$ for all $x\in B_r\setminus\{x^*\}$. Our results extend to the setting of Banach spaces some results previously obtained by B. Ricceri in the setting of Hilbert spaces.
2023
File in questo prodotto:
File Dimensione Formato  
mta0197-b.pdf

solo gestori archivio

Descrizione: Reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 137.17 kB
Formato Adobe PDF
137.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3281029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact