Protected areas offer unique opportunities for recreation, but the non-market nature of these benefits presents a significant challenge when trying to represent value in the decision-making processes. The most common techniques to value recreation are based on resource-intensive primary surveys which are difficult to perform at a large scale or in remote locations. This is true in the case of Italy, where a large and diverse network of protected areas suffers from lack of data. Here, we offer an alternative data source for the valuation of recreation by integrating the metadata of geotagged photographs from social media into single-site, individual travel cost models for 67 Italian protected areas. Count data model results are generally consistent with standard economic and consumer demand theory for ordinary goods, with a zero-truncated Poisson model returning down sloping demand curves for 50 of 67 sites. A significant travel cost coefficient was returned for 33 sites (p-value <0.05) for which consumer surplus estimates were found in the range between €6.33 and €87.16, with a mean value per trip of €32.82. Although not without their own challenges, the results presented highlight the possibilities of new forms of spatial big data as a novel data source for environmental economists.
Valuing recreation in Italy's protected areas using spatial big data
De Salvo, MariaUltimo
2022-01-01
Abstract
Protected areas offer unique opportunities for recreation, but the non-market nature of these benefits presents a significant challenge when trying to represent value in the decision-making processes. The most common techniques to value recreation are based on resource-intensive primary surveys which are difficult to perform at a large scale or in remote locations. This is true in the case of Italy, where a large and diverse network of protected areas suffers from lack of data. Here, we offer an alternative data source for the valuation of recreation by integrating the metadata of geotagged photographs from social media into single-site, individual travel cost models for 67 Italian protected areas. Count data model results are generally consistent with standard economic and consumer demand theory for ordinary goods, with a zero-truncated Poisson model returning down sloping demand curves for 50 of 67 sites. A significant travel cost coefficient was returned for 33 sites (p-value <0.05) for which consumer surplus estimates were found in the range between €6.33 and €87.16, with a mean value per trip of €32.82. Although not without their own challenges, the results presented highlight the possibilities of new forms of spatial big data as a novel data source for environmental economists.File | Dimensione | Formato | |
---|---|---|---|
Valuing Recreation in Italy’s Protected Areas Using Spatial Big Data.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
6.26 MB
Formato
Adobe PDF
|
6.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.