This study describes the development of a molecularly imprinted polymer (MIP) polypyrrole-based (Ppy-based) electrochemical melamine sensor. Two different modifications of polymeric layers in the design of MIP-based melamine sensor systems were assessed. The addition of gold nanoparticles (AuNPs) or gold(I) complexes in the polymerization solution containing pyrrole was studied. The characteristics of all polypyrrole layers were evaluated indirectly using a [Fe(CN)6]3–/[Fe(CN)6]4– as a redox probe by application of differential pulse voltammetry (DPV). The most optimal results were obtained when the MIP polymerization was prepared from a solution containing 50 mM pyrrole, 5 mM melamine, and 0.05 nM 3.5 nm diameter AuNPs. Under these conditions, the observed response of MIP to melamine was 6.61 times greater than that of non-imprinted polymer (NIP). To further characterize the detection of melamine, overoxidized forms of both MIP and NIP were employed. The utilization of MIP resulted in a linear correlation within the concentration range from 50 nM to 5 µM melamine, with an estimated limit of detection (LOD) of 0.83 nM melamine.

Molecularly imprinted polypyrrole-based electrochemical melamine sensors

Milea, Demetrio;
2024-01-01

Abstract

This study describes the development of a molecularly imprinted polymer (MIP) polypyrrole-based (Ppy-based) electrochemical melamine sensor. Two different modifications of polymeric layers in the design of MIP-based melamine sensor systems were assessed. The addition of gold nanoparticles (AuNPs) or gold(I) complexes in the polymerization solution containing pyrrole was studied. The characteristics of all polypyrrole layers were evaluated indirectly using a [Fe(CN)6]3–/[Fe(CN)6]4– as a redox probe by application of differential pulse voltammetry (DPV). The most optimal results were obtained when the MIP polymerization was prepared from a solution containing 50 mM pyrrole, 5 mM melamine, and 0.05 nM 3.5 nm diameter AuNPs. Under these conditions, the observed response of MIP to melamine was 6.61 times greater than that of non-imprinted polymer (NIP). To further characterize the detection of melamine, overoxidized forms of both MIP and NIP were employed. The utilization of MIP resulted in a linear correlation within the concentration range from 50 nM to 5 µM melamine, with an estimated limit of detection (LOD) of 0.83 nM melamine.
2024
File in questo prodotto:
File Dimensione Formato  
75.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 836.09 kB
Formato Adobe PDF
836.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3284768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact