Epilepsy is one of the most common neurological diseases in both adults and children. Despite improvements in medical care, 20 to 30% of patients are still resistant to the best medical treatment. The quality of life, neurologic morbidity, and even mortality of patients are significantly impacted by medically intractable epilepsy. Nowadays, conservative therapeutic approaches consist of increasing medication dosage, changing to a different anti-seizure drug as monotherapy, and combining different antiseizure drugs using an add-on strategy. However, such measures may not be sufficient to efficiently control seizure recurrence. Resective surgery, ablative procedures and non-resective neuromodulatory (deep-brain stimulation, vagus nerve stimulation) treatments are the available treatments for these kinds of patients. However, invasive procedures may involve lengthy inpatient stays for the patients, risks of long-term neurological impairment, general anesthesia, and other possible surgery-related complications (i.e., hemorrhage or infection). In the last few years, MR-guided focused ultrasound (MRgFUS) has been proposed as an emerging treatment for neurological diseases because of technological advancements and the goal of minimally invasive neurosurgery. By outlining the current knowledge obtained from both preclinical and clinical studies and discussing the technical opportunities of this therapy for particular epileptic phenotypes, in this perspective review, we explore the various mechanisms and potential applications (thermoablation, blood-brain barrier opening for drug delivery, neuromodulation) of high- and low-intensity ultrasound, highlighting possible novel strategies to treat drug-resistant epileptic patients who are not eligible or do not accept currently established surgical approaches. Taken together, the available studies support a possible role for lesional treatment over the anterior thalamus with high-intensity ultrasound and neuromodulation of the hippocampus via low-intensity ultrasound in refractory epilepsy. However, more studies, likely conceiving epilepsy as a network disorder and bridging together different scales and modalities, are required to make ultrasound delivery strategies meaningful, effective, and safe.

MR-Guided Focused Ultrasound for Refractory Epilepsy: Where Are We Now?

Labate, Angelo
Primo
;
Morabito, Rosa;Smorto, Chiara;Militi, Annalisa;Cammaroto, Simona;Tomaiuolo, Francesco;Marino, Silvia;Cerasa, Antonio;Quartarone, Angelo
2023-01-01

Abstract

Epilepsy is one of the most common neurological diseases in both adults and children. Despite improvements in medical care, 20 to 30% of patients are still resistant to the best medical treatment. The quality of life, neurologic morbidity, and even mortality of patients are significantly impacted by medically intractable epilepsy. Nowadays, conservative therapeutic approaches consist of increasing medication dosage, changing to a different anti-seizure drug as monotherapy, and combining different antiseizure drugs using an add-on strategy. However, such measures may not be sufficient to efficiently control seizure recurrence. Resective surgery, ablative procedures and non-resective neuromodulatory (deep-brain stimulation, vagus nerve stimulation) treatments are the available treatments for these kinds of patients. However, invasive procedures may involve lengthy inpatient stays for the patients, risks of long-term neurological impairment, general anesthesia, and other possible surgery-related complications (i.e., hemorrhage or infection). In the last few years, MR-guided focused ultrasound (MRgFUS) has been proposed as an emerging treatment for neurological diseases because of technological advancements and the goal of minimally invasive neurosurgery. By outlining the current knowledge obtained from both preclinical and clinical studies and discussing the technical opportunities of this therapy for particular epileptic phenotypes, in this perspective review, we explore the various mechanisms and potential applications (thermoablation, blood-brain barrier opening for drug delivery, neuromodulation) of high- and low-intensity ultrasound, highlighting possible novel strategies to treat drug-resistant epileptic patients who are not eligible or do not accept currently established surgical approaches. Taken together, the available studies support a possible role for lesional treatment over the anterior thalamus with high-intensity ultrasound and neuromodulation of the hippocampus via low-intensity ultrasound in refractory epilepsy. However, more studies, likely conceiving epilepsy as a network disorder and bridging together different scales and modalities, are required to make ultrasound delivery strategies meaningful, effective, and safe.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3285875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact