To lower the cost of additive manufacturing of metallic components, the goal of this work is to investigate and optimize a multi-step process by material extrusion (MEX) of a polylactide filament loaded with bronze to remove the gas produced during the debinding and sintering steps. First, by adjusting the infill (10%, 50%, and 100%), and then by designing and constructing internal passages to aid in the expulsion of gases that occur during the debinding, a calibration cube is created. Additionally, the impact of the cooling period during the debinding is examined. To assess how the technique changes shape, sizes, and internal structure, all the samples are ultimately weighed, scanned, and cut. In order to reduce deformation occurred during the debinding and sintering gases, a new design method has been developed. The method consists of the generation of internal channels which connect the voids of the infill and allow gases to flow out through a central channel. As seen, samples with ejection channels and an intermediate infill (i.e., 50%) both exhibit better attributes.

A Design Strategy for Removing the Debinding and Sintering Gas in Additive Manufactured Samples of a Bronze/Polylactic Acid Filament

Cucinotta, Filippo
Supervision
;
Di Bella, Guido
Data Curation
;
Raffaele, Marcello
Methodology
;
Salmeri, Fabio
Software
2024-01-01

Abstract

To lower the cost of additive manufacturing of metallic components, the goal of this work is to investigate and optimize a multi-step process by material extrusion (MEX) of a polylactide filament loaded with bronze to remove the gas produced during the debinding and sintering steps. First, by adjusting the infill (10%, 50%, and 100%), and then by designing and constructing internal passages to aid in the expulsion of gases that occur during the debinding, a calibration cube is created. Additionally, the impact of the cooling period during the debinding is examined. To assess how the technique changes shape, sizes, and internal structure, all the samples are ultimately weighed, scanned, and cut. In order to reduce deformation occurred during the debinding and sintering gases, a new design method has been developed. The method consists of the generation of internal channels which connect the voids of the infill and allow gases to flow out through a central channel. As seen, samples with ejection channels and an intermediate infill (i.e., 50%) both exhibit better attributes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3290209
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact