In recent years, micro- and nanoplastics (MNPs) have represented an emerging threat for the aquatic environment due to their persistence and widespread distribution. Indeed, their small size and increased surface area lead to a high biological reactivity, which can be crucial for the health status of biota. To date, several studies have investigated lethal and sublethal endpoints of MNPs, while one of the main challenges is to understand their mechanisms of toxicity in a comprehensive manner. With this aim, the field of aquatic ecotoxicology can now benefit from the -omics approaches. This review focuses on the recent advances related to the use of transcriptomics, proteomics, and metabolomics to deeply investigate the molecular and biochemical responses of aquatic organisms, both fishes and aquatic invertebrates, to pristine polystyrene (PS) MNPs. The literature reviewed revealed that transcriptomics and metabolomics are the most frequently used -omic approaches. Overall, the studies taken into consideration shed light on the events triggered by PS MNPs at molecular and cellular levels, identifying as mechanisms of toxicity the pathways involved in oxidative stress, energy metabolism, immune response, and the nervous system. Future studies should therefore focus on the use and integration of multi-omics approaches for a more comprehensive understanding of the mechanisms involved in MNPs toxicity.

Polystyrene Micro- and Nanoplastics (PS MNPs): A Review of Recent Advances in the Use of -Omics in PS MNP Toxicity Studies on Aquatic Organisms

Eliso, Maria Concetta
Primo
;
Billè, Barbara
Secondo
;
Cappello, Tiziana
Penultimo
;
Maisano, Maria
Ultimo
2024-01-01

Abstract

In recent years, micro- and nanoplastics (MNPs) have represented an emerging threat for the aquatic environment due to their persistence and widespread distribution. Indeed, their small size and increased surface area lead to a high biological reactivity, which can be crucial for the health status of biota. To date, several studies have investigated lethal and sublethal endpoints of MNPs, while one of the main challenges is to understand their mechanisms of toxicity in a comprehensive manner. With this aim, the field of aquatic ecotoxicology can now benefit from the -omics approaches. This review focuses on the recent advances related to the use of transcriptomics, proteomics, and metabolomics to deeply investigate the molecular and biochemical responses of aquatic organisms, both fishes and aquatic invertebrates, to pristine polystyrene (PS) MNPs. The literature reviewed revealed that transcriptomics and metabolomics are the most frequently used -omic approaches. Overall, the studies taken into consideration shed light on the events triggered by PS MNPs at molecular and cellular levels, identifying as mechanisms of toxicity the pathways involved in oxidative stress, energy metabolism, immune response, and the nervous system. Future studies should therefore focus on the use and integration of multi-omics approaches for a more comprehensive understanding of the mechanisms involved in MNPs toxicity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3293188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact