Let K be a field, V a finite dimensional K-vector space and E the exterior algebra of V.We analyze iterated mapping cone over E. If I is a monomial ideal of E with linear quotients, we show that the mapping cone construction yields a minimal graded free resolution F of I via the Cartan complex. Moreover, we provide an explicit description of the differentials in F when the ideal I has a regular decomposition function. Finally, we get a formula for the graded Betti numbers of a new class of monomial ideals including the class of strongly stable ideals.
Mapping cones of monomial ideals over exterior algebras
Crupi M.
Primo
;Lax E.Ultimo
2024-01-01
Abstract
Let K be a field, V a finite dimensional K-vector space and E the exterior algebra of V.We analyze iterated mapping cone over E. If I is a monomial ideal of E with linear quotients, we show that the mapping cone construction yields a minimal graded free resolution F of I via the Cartan complex. Moreover, we provide an explicit description of the differentials in F when the ideal I has a regular decomposition function. Finally, we get a formula for the graded Betti numbers of a new class of monomial ideals including the class of strongly stable ideals.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FinaleMapping cones of monomial ideals over exterior algebras.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.