Let K be a field, V a finite dimensional K-vector space and E the exterior algebra of V.We analyze iterated mapping cone over E. If I is a monomial ideal of E with linear quotients, we show that the mapping cone construction yields a minimal graded free resolution F of I via the Cartan complex. Moreover, we provide an explicit description of the differentials in F when the ideal I has a regular decomposition function. Finally, we get a formula for the graded Betti numbers of a new class of monomial ideals including the class of strongly stable ideals.

Mapping cones of monomial ideals over exterior algebras

Crupi M.
Primo
;
Lax E.
Ultimo
2024-01-01

Abstract

Let K be a field, V a finite dimensional K-vector space and E the exterior algebra of V.We analyze iterated mapping cone over E. If I is a monomial ideal of E with linear quotients, we show that the mapping cone construction yields a minimal graded free resolution F of I via the Cartan complex. Moreover, we provide an explicit description of the differentials in F when the ideal I has a regular decomposition function. Finally, we get a formula for the graded Betti numbers of a new class of monomial ideals including the class of strongly stable ideals.
2024
File in questo prodotto:
File Dimensione Formato  
FinaleMapping cones of monomial ideals over exterior algebras.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3293742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact