The variations in the distribution of solar radiation due to the ~ 10^5 years Milankovitch cycle, which is connected to the Earth eccentricity variation, cannot explain the sharp drop in temperature of 6 °C ÷ 10 °C that marks the transition from the interglacial to the glacial age registered in the last ~ 5.5 10^6 years temperature variation behavior. More specifically, neglecting other effects, only a temperature variation of 0.2 °C ÷ 0.3 °C can be attributed to this cycle and, therefore, positive feedback effects should be taken into account to explain the registered effect. In the present work, a comparative Wavelet-Fourier analysis of the Vostok recontructed temperature record, for which different sampling steps are taken into account, is performed. Then, a study of exponential feedback effects within a climate parametric resonance model is dealt and discussed. The obtained findings put into evidence an exponential amplification of the temperature variation from the interglacial to the glacial age supporting the hypothesis that the system energization be connected to periodic variations in the internal solar system parameters. More in details, it is shown that, following the parametric resonance climate model, even small oscillations increase over time proportionally to the system energy itself, i.e. exponentially, and hence, a series of connected resonances is able to energize the climate system.
Exponential feedback effects in a parametric resonance climate model
Caccamo M. T.Primo
;Magazu S.
Ultimo
2023-01-01
Abstract
The variations in the distribution of solar radiation due to the ~ 10^5 years Milankovitch cycle, which is connected to the Earth eccentricity variation, cannot explain the sharp drop in temperature of 6 °C ÷ 10 °C that marks the transition from the interglacial to the glacial age registered in the last ~ 5.5 10^6 years temperature variation behavior. More specifically, neglecting other effects, only a temperature variation of 0.2 °C ÷ 0.3 °C can be attributed to this cycle and, therefore, positive feedback effects should be taken into account to explain the registered effect. In the present work, a comparative Wavelet-Fourier analysis of the Vostok recontructed temperature record, for which different sampling steps are taken into account, is performed. Then, a study of exponential feedback effects within a climate parametric resonance model is dealt and discussed. The obtained findings put into evidence an exponential amplification of the temperature variation from the interglacial to the glacial age supporting the hypothesis that the system energization be connected to periodic variations in the internal solar system parameters. More in details, it is shown that, following the parametric resonance climate model, even small oscillations increase over time proportionally to the system energy itself, i.e. exponentially, and hence, a series of connected resonances is able to energize the climate system.File | Dimensione | Formato | |
---|---|---|---|
Scientific Reports_Caccamo_Magazù.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
2.61 MB
Formato
Adobe PDF
|
2.61 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.