Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p–p–p and p–p– Λ systems in terms of three-particle correlation functions carried out for pp collisions at s=13 TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p–p–p system, hinting to the presence of a residual three-body effect while for p–p– Λ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.

Towards the understanding of the genuine three-body interaction for p–p–p and p–p– Λ

Mandaglio G.
Investigation
;
Rosano A.
Investigation
;
Trifiro A.
Investigation
;
Triolo A. S.
Investigation
;
2023-01-01

Abstract

Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p–p–p and p–p– Λ systems in terms of three-particle correlation functions carried out for pp collisions at s=13 TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p–p–p system, hinting to the presence of a residual three-body effect while for p–p– Λ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3295549
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact