The nutritional value of sheep’s milk and its derivatives is influenced by the lipid fraction, which is affected by diet and genetics. This study aimed to explore the genetic variations in the DGAT1 and SCD genes and assessed the impact of the DGAT1 genotype on milk quality in Valle del Belìce sheep, considering diet supplementation with carob pulp and barley grain. Among the potentially polymorphic sites, only DGAT1 g.127 C > A and SCD g.87 C > A showed variability. The DGAT1 genotype did not significantly impact milk yield and composition, except for higher urea content in the CA genotypes than in the CC ones. Carob pulp increased the milk fat content compared to barley grain. Genetic variation in DGAT1 was associated with changes in the milk fatty acid profile; specifically, the CA genotype exhibited higher levels of short-chain fatty acids and lower levels of polyunsaturated fatty acids compared to the CC genotype. Carob pulp supplementation increased saturated fatty acids and reduced unsaturated fractions, leading to milk with higher atherogenic and thrombogenic indices. No significant interaction was found between genotype and diet. This study provides insights into the genetic and dietary factors influencing sheep’s milk composition. Further research is needed to understand the impact of these genetic variations on milk production and composition, as well as to determine optimal levels of carob pulp for improving fat percentage and promoting sustainable sheep breeding practices.
Polymorphisms at Candidate Genes for Fat Content and Fatty Acids Composition: Effects on Sheep Milk Production and Fatty Acid Profile Using Two Dietary Supplementations
Tolone M.Formal Analysis
;
2023-01-01
Abstract
The nutritional value of sheep’s milk and its derivatives is influenced by the lipid fraction, which is affected by diet and genetics. This study aimed to explore the genetic variations in the DGAT1 and SCD genes and assessed the impact of the DGAT1 genotype on milk quality in Valle del Belìce sheep, considering diet supplementation with carob pulp and barley grain. Among the potentially polymorphic sites, only DGAT1 g.127 C > A and SCD g.87 C > A showed variability. The DGAT1 genotype did not significantly impact milk yield and composition, except for higher urea content in the CA genotypes than in the CC ones. Carob pulp increased the milk fat content compared to barley grain. Genetic variation in DGAT1 was associated with changes in the milk fatty acid profile; specifically, the CA genotype exhibited higher levels of short-chain fatty acids and lower levels of polyunsaturated fatty acids compared to the CC genotype. Carob pulp supplementation increased saturated fatty acids and reduced unsaturated fractions, leading to milk with higher atherogenic and thrombogenic indices. No significant interaction was found between genotype and diet. This study provides insights into the genetic and dietary factors influencing sheep’s milk composition. Further research is needed to understand the impact of these genetic variations on milk production and composition, as well as to determine optimal levels of carob pulp for improving fat percentage and promoting sustainable sheep breeding practices.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.